
 

 



 

 



 

 



 

  



 

АНОТАЦІЯ 

 

УДК 004.42 + 519.2  

Дмитро МАЛЬОВАНИЙ. Архітектурна та функціональна оптимізація 

програмного модуля для імовірнісних розрахунків та гейміфікації для 

фінансових індустрій. Магістерська кваліфікаційна робота зі спеціальності 126 – 

Інформаційні системи та технології, освітня програма – Інформаційні технології 

аналізу даних та зображень. Вінниця: ВНТУ, 2023. 109 с. 

На англ. мові. Бібліогр.: 33 назви; рис.: 27; табл.: 6. 

У роботі розроблено архітектуру та виконано програмну реалізацію 

модуля обчислень та системи взаємодії для гейміфікації комерційних проектів, 

зокрема закладів торгівлі, а також модель оптимізації мережевої архітектури та 

програмної реалізації модуля. Робота містить математичне та алгоритмічне 

обґрунтування принципів роботи системи. 

Ключові слова: теорія ймовірностей, гейміфікація, система прийняття 

рішень, архітектура програмного забезпечення. 

 

  



 

ABSTRACT 

 

Dmytro MALIOVANYI. Architectural and functional optimization of program 

module for probabilistic calculations and gamification for financial industries. 

Master’s qualification paper of a specialty 126 – Informational systems and 

technologies, curricula – Informational technologies of data and image analysis. 

Vinnytsia: VNTU, 2023. 109 p. 

In English language. Bibliography: 33 titles; fig.: 27; tabl.: 6. 

In the work, an architecture of calculations’ module and interaction system for 

commercial projects, trade establishments in particular, have been designed and 

implemented; also, a network optimization architecture and a codebase optimization 

has been performed. The paper contains mathematical and algorithmic reasoning for 

of system working principles. 

Keywords: probability theory, gamification, decision support system, software 

architecture. 

 



 

2 

TABLE OF CONTENTS 

 

INTRODUCTION ......................................................................................................... 4 

1 GENERAL CHARACTERISTIC OF THE PROBLEM AND A SYSTEM TO 

OPTIMIZE .................................................................................................................... 7 

1.1 Basic concepts and approaches ............................................................................ 7 

1.2 Description of target system functionality ........................................................... 9 

1.3 Description of target system structure, its pros and cons .................................. 10 

1.4 Review of analogues .......................................................................................... 12 

1.4.1 BlueRibbon Software ................................................................................ 13 

1.4.2 SoftSwiss Software ................................................................................... 13 

1.5 Conclusions to Section 1 .................................................................................... 14 

2 REVIEW OF TOOLS AND APPROACHES.......................................................... 16 

2.1 Programming language of choice ...................................................................... 16 

2.2 IDE of choice ..................................................................................................... 18 

2.3 Version control system of choice ....................................................................... 19 

2.4 Conclusions to Section 2 .................................................................................... 20 

3 MODULES’ DESIGN AND IMPLEMENTATION ............................................... 21 

3.1 Design of PRNG module ................................................................................... 21 

3.1.1 Defining legal & technical requirements .................................................. 21 

3.1.2 Architecture design.................................................................................... 22 

3.2 Design of decision support module .................................................................... 23 

3.2.1 Deriving mathematical component for volatility-based entropy .............. 24 

3.2.2 Deriving mathematical component for impact of the input parameters ... 30 

3.2.3 Architecture choices .................................................................................. 40 

3.3 Implementation of modules ............................................................................... 41 

3.3.1 DSS implementation ................................................................................. 41 

3.3.2 PRNG module implementation ................................................................. 45 

3.3.3 PRNG module certification ....................................................................... 47 

3.3.4 DSS module integration with PRNG ........................................................ 48 



 

3 

3.3.5 Statistic collection module implementation .............................................. 49 

3.3.6 Containerization support implementation ................................................. 51 

3.4 Conclusions to Section 3 .............................................................................. 53 

4 BOTTLENECKS OPTIMIZATION AND ARCHITECTURE AMENDMENTS . 55 

4.1 Subnet traffic optimization problem .................................................................. 55 

4.2 Database interaction optimization problem ....................................................... 57 

4.3 Load balancing optimization problem ............................................................... 59 

4.4 Calculations optimization consideration ............................................................ 61 

4.4.1 Probability function intermediary calculations optimization .................... 61 

4.4.2 Dependency inversion of calculations and participant requests ............... 62 

4.5 Conclusions to Section 4 .................................................................................... 62 

5. THE ECONOMIC SECTION ................................................................................. 64 

5.1 Technological audit of the developed the retail gamification system ............... 64 

5.2 Calculation of the expenses incurred in the development of the retail gamification 

system ....................................................................................................................... 69 

5.3 Calculation of the economic effect from the potential commercialization of the 

development ............................................................................................................. 74 

CONCLUSIONS ......................................................................................................... 82 

LIST OF REFERENCED LITERATURE .................................................................. 85 

APPENDICES ............................................................................................................. 88 

Appendix A (mandatory) Technical task ................................................................. 89 

Appendix B (mandatory)  Graphical section ........................................................... 92 

Appendix C (mandatory) Code listing ..................................................................... 98 

Appendix D Act of incorporation .......................................................................... 108 

Appendix E (mandatory) Plagiarism check protocol ............................................. 109 

 

  



 

4 

INTRODUCTION 

 

Relevance of the problem. Nowadays humanity is striving towards delegating 

different aspects and complications of life to the automatons as much as possible. This 

also implies automating different complex systems and even making decisions. 

Speaking of that, there are already areas where computers’ fraction is overwhelming 

the human one in aspect of making decisions. Such areas are generally sharing a couple 

of common characteristics: they are simple enough to be defined for solution which 

can be done in a set number of operations; they are tedious and time-consuming enough 

that automating such processes is promising in terms of saving time and money. Most 

of the implementations of decision-making systems and modules also have one thing 

in common: they heavily rely on a context and historical data, e.g., a financial decision-

making system relies on a huge amount of historical data, and may outperform human 

operating in the same area because of faster computational rate. [1]  

But sometimes, there’s a need, due to limitations either specific to area or 

related to law, which define a hard requirement that such decision-making system 

should perform in stateless systems, while keeping general fashion in making decisions 

same as for stateful systems. This raises a problem which needs to be solved. [2] 

Also, when talking specifically regarding financial and gambling industries, 

which are heavily governed by law and have strict definitions and limitations. This 

means there are systems which require the feature of making decisions based on a true 

entropy, to make games progress fairly and yet to provide predictable general fashion 

of the data as a number of decisions rapidly increasing. There is a set of limitations for 

such components, which vary slightly in each country where a gambling law applies, 

but generally such regulations include such decision-making component being 

separated into a random number generator (hereinafter referred to as the RNG), and a 

decision-making system itself. Both components are obliged to be designed in a 

manner to withstand high load, provide failsafe mechanism and operate in stateless 

environment. [3] Both components then must be tested and certified by an assessed 

audit-conducting body, which will undertake a full audit of the component and it’s 



 

5 

functioning. Another complication is both above-mentioned components must be 

otherwise stateless (excluding storing the data produced) [4]. Development process of 

such system faces a problem to define an efficient and performance-cheap way to 

produce decisions under high load, with following the general distribution while 

neither interacting with it nor gathering any other data about it except the initial 

parameters. 

The purpose of the work is to improve a performance and optimize resource 

utilization of a stateless decision-making module, to adapt it to better suit applications 

in stateless systems, work under high load and providing a satisfactory entropy degree 

while following general distribution tendency with the rule of big numbers. Since 

conventional statistical formulas rely on the distribution which is to be analyzed, and 

do not provide required levels of entropy out of the box, another approach needs to be 

discovered and applied, efficiently providing the product system with all the required 

features. 

The following problems should be solved to achieve the goal: 

1) Conduct an analysis of existing analogues and techniques applied to achieve 

the said goal. 

2) Review the tools which are to be used in the development process. 

3) Implement a random number generator module compliant with restrictions 

and undergo certification of the components. 

4) Define a mathematical solution to the problem for providing convergent en-

tropy-based decision-making generator and implement it programmatically. 

5) Conduct analysis and perform system & architecture optimization. 

6) Check the performance & resource utilization gains. 

The object of work is a process of gamification of retail and other commercial 

industries via application of stateless decision support system and an analysis of 

optimization process of existing systems. 

The subject of work are instruments and approaches to building decision 

support systems as well as methodologies of software architecture and codebase 

analysis and optimization. 



 

6 

Research methods applied int this work include, but are not limited to: analysis, 

modelling, classification, generalization, observation, prognostication, experiment, 

pragmatic model of scientific research etc. 

Scientific novelty is granted by implementing of a new event dependency chain 

for a decision support system, which, in contrast to existing ones, leads to structure 

improvements and is characterized by more than 70% CPU load reduction for specified 

system, as well as reduction in average response awaiting time for an end user by 50% 

on average, and in implementing a tailored loadbalancer which takes into account 

custom logic and system-specific metrics for an optimal distribution of decision 

support system modules among physical instances, which would allow to save up to 

20% of resources in cases when more than 1 game is being launched. 

Practical value of the work lays in providing a ready-to-deploy system, 

compliant with law-enforced and domain-specific restrictions[2-4]. This system should 

be certified by a legitimate body. It will allow to provide reliable and endorsed service 

for supplying decisions to different games and other areas of applications. System will 

operate based on the random numbers generated by a cryptographically strong PRNG 

implementation [5-6]. Specified system should be optimized according to found 

defects. Improvement of bottlenecks’ handling and performance and resource usage 

optimization should be justified and quantified. 

Approbation and publications of the work results. Preliminary results of this 

paper has been presented on LI Scientifically-technical conference of the units of the 

intellectual informational technologies and automatization department, VNTU, and 

published in the form of abstracts of the report [7]. The part of the codebase has been 

copyrighted under name «server-metric-processor» №110271 from December 13, 

2021; a DSS module codebase has been accepted for a copyright procedure at October 

2023. Also, results of the work were incorporated by the Pragmat Tech Ltd. (Appendix 

D).  



 

7 

1 GENERAL CHARACTERISTIC OF THE PROBLEM AND A SYSTEM TO 

OPTIMIZE 

 

1.1 Basic concepts and approaches 

 

Decision making system generally means any kind of a computational system 

able to make decisions based on the input. They can be implemented either by an 

artificial intelligence or by a strictly predefined algorithm. Such systems very often 

heavily rely on the data, and very narrowly specialized. The two most spread 

subdivisions of these systems are expert systems and decision support systems [8-9].  

Expert systems are general-purpose services which are meant to free people 

from not very expertise-demanding yet time-consuming tasks, e.g., answering 

questions of patients. In most cases symptoms are typical, and can be answered by an 

automaton if provided with sufficient knowledge base, which gives an opportunity for 

skilled doctors to focus on more tough cases, where physical involvement is required. 

On the current step of development, although providing very good and promising 

results and being widely integrated in many areas, these systems do face a set of 

limitations and drawbacks. First of all, such systems require a knowledge base, which 

usually requires huge amounts of data and obviously, a lot of effort to collect and 

validate it. Such systems also give a superficial answer, they do not understand a case 

in a way human does, which means such systems sometimes may give the most 

inefficient or even irrelevant solution [10].  

Decision support systems, abbreviated as DSS, are meant for helping out in 

making financial solutions, often applied to stock markets or banking industry. These 

systems may or may be complex and do work from just collecting data to building 

annual financial strategies. They also may or may not involve human in the process, so 

some of these systems are not fully automatic. Another narrow application of subclass 

of these systems are in gambling or another area, where both individual entropy and 

general convergency are required [11]. In some cases, in gambling and other applicable 

areas, limitations for systems to be as independent and stateless as possible are applied, 



 

8 

especially in countries and regions where such domains are strictly regulated by the 

law. This raises a problem to develop a standalone-able system, viable for application 

in stateless environment while meeting the business needs. Such systems also often 

require certification or kind of endorsement, both making the company eligible on the 

market and giving the customers an assurance that the process is fair and they aren’t 

fooled. All the big gambling companies in countries with law-regulated gambling 

constantly undergo licensing, and present the result of it to the world, making them 

more attractive to customers [12]. 

Also, approaches of implementation of decision-making systems vary. Data 

science is applied in areas, where either some human-like perception is required, or the 

area of applications is very wide to be set in a defined list of rules, or a general approach 

to solution is so vague that it is hard or impossible to be formalized from the human 

point of view. Another approach are strictly defined algorithms. They outperform data 

science in most of the times in both performance and accuracy of the decision, but have 

two significant drawbacks: firstly, they are very narrow-specialized and unable to 

“learn” to make better decisions without human interference in the algorithm 

implementation, and secondly, they cannot be applied to every aspect where a decision-

making system is required, making data science approach the only viable solution for 

such cases. 

When considering DSS for entropy-based decisions for gambling, the 

formalized set of rules seems to be a more suitable solution. But when talking about 

stateless system, it is unclear how to supply convergence to general distribution (which 

is inaccessible from a stateless system) yet keep entropy of individual decisions. 

Machine learning can provide most straightforward solution to the problem, but in 

stateless system, it might be not that “random”, because once the system is trained and 

put into the workflow, it shouldn’t be able to store previously processed data, raising 

hazard of failing the randomness certification. So, there is a need to find a way to derive 

a mathematical approach which would allow to implement an algorithm which will 

perform well in stateless systems. 



 

9 

1.2 Description of target system functionality 

 

System for gamification of financial industries and sales optimization 

(hereinafter referred to as the gamification system) has providing services on a 

business-to-business model which in serve consumers in any fashion on paid basis as 

its aim. Key principle of functioning system’s work  

The principle of the system's operation lies in introducing material and non-

material incentives for end users of the business system that utilizes gamification 

services (hereinafter referred to as the client) to engage in the use and/or purchase on 

the client's platform. 

The implementation of such incentives is carried out by placing an additional 

mechanism on target goods or services, which will allow all users or buyers of the 

aforementioned goods or services to participate in a draw for material or non-material 

rewards. The prize draw has a fundamental similarity to a lottery system but has several 

key differences, as well as much greater configuration flexibility to satisfy even very 

specific client’s requirements. 

Material rewards can take the form of cash sums, physical gifts, electronic 

objects that are subjects of licenses for commercial distribution, tokens for using 

commercial systems (e.g., such as Dall-E tokens), and so on. Non-material rewards can 

be presented as verbal wishes, predictions, and so forth. The client also has the 

opportunity to integrate their own type of incentive into the system. 

An ability to create, configure and manage aforementioned games should be 

provided. It is suggested to implement it in the form of the Web interface with ability 

to create new and edit existing games, as well as monitor their state, progress and other 

analytical parameters related to target metrics of the customer. 

 

  



 

10 

1.3 Description of target system structure, its pros and cons 

 

Gamification system has a row of components and layers. The following ones 

should be highlighted as functionally significant: 

1) frontend – responsible for visual representation of functions on the client’s 

web resource in the form of addon/widget, or on an own web resource; 

2) segmentation handler (backend) – responsible for events’ probability 

definition and automatical distribution of lottery ticket applications, filtering 

appropriate end user segments in case of tag system utilization; 

3) auth service – responsible for providing external API endpoints, user pool 

management, notification subscription and propagation management; also provides 

authentication, filtering and API access levels segregation; 

4) jackpot service – responsible for applications’ handling as well as lottery 

drawing, creation of new lotteries’ instances (also referred to as jackpots), managing 

existing jackpots and propagation of win and state notifications to auth and backend 

layers, storing data in the database and sending the auditorial statistics; 

5) randomizer – responsible for providing random numbers generated with 

cryptographically strong algorithm, subject for audits and certification; 

6) payment service – responsible for handling payment requests in case of 

monetary rewards; can operate in tandem with both bank accounts and client-specific 

bonus program system accounts; 

7) backoffice – responsible for providing the client with web functionality 

for creating and managing jackpots and other aspects of bonus programs applied to 

their services. 

Thus, any event for participation in the jackpot draw must go through the 

frontend, be validated on the backend, processed by the jackpot system, stored in the 

database, and the processing result should be announced to all end users participating 

in the jackpot draw through the auth service. Notification distribution is implemented 

using the WebSocket Secure protocol and STOMP (an extension over WSS that 

provides heartbeat and HTTP handshake functionality). In the case of a winning event, 



 

11 

notifications will also be sent to the frontend through auth, and in the case of a monetary 

prize, a notification will be sent to the payment system. 

For clarity on the operation principle of the described structure, a schematic 

sequence diagram is provided in Figure 1.1. This diagram also includes the 

Loadbalancer element, currently fulfilled by the Elastic Load Balancer (a component 

of the AWS cloud environment). The load is distributed using a round-robin algorithm. 

The most resource-intensive components are the backend and jackpot, as they must 

process a significant number of requests and filter them. These components are 

implemented with scalability in mind and are capable of achieving it. 

 

Figure 1.1 – Sequence diagram of the key processes in the system 

 

The advantages of such a system architecture in its current implementation 

include the speed of processing and notification of results without unnecessary delays, 



 

12 

a reactive approach to event processing, high intensity, efficiency, and optimization 

tailored to the specific tasks of performing mathematical and logical operations 

according to formulas for determining draw results. The architecture also demonstrates 

flexibility for integration with client systems and scalability. 

Despite the aforementioned benefits, a thorough analysis has detected a 

presence of a number of bottlenecks and places which could potentially create 

obstructions for system’s operations, in peak situations in particular: 

− traffic speed inside the cloud’s subnet, in particular between pairs jackpot-

randomizer and backend-jackpot; 

− jackpot layer’s database session pool size; 

− request distribution using round robin algorithm and AWS-provided 

orchestrator implementation do not suffice in taking into account system’s specifics, 

thus is suboptimal and can potentially be a source of an unjustified extra load. 

 

 

1.4 Review of analogues 

 

Due to complexity of the task and high demand from industry, a number of 

companies propose such kind of services. Most of them are businesses of considerable 

size, and their business model orients serving big customers, thus not providing a 

detailed description or pricing, limiting publicly available information to general 

roster, motivating requesting a personalized consultation instead. In addition to this, to 

be eligible for aforementioned consultation, a seeker must provide proofs of being 

licensed gambling company and complies with standards and permits, so far rendering 

next to impossible getting all the required data for ordinary users. Nonetheless, from 

available information, the following description of some analogues can be drawn. 

 

 

  



 

13 

1.4.1 BlueRibbon Software 

 

BlueRibbon provides services of certified gaming options, including DSS for 

making decisions granting enough entropy and general convergency. Their system is 

certified to comply with all the required limitations, including statelessness of RNG 

and DSS, and passed all the entropy and other statistical tests, and has a license to 

operate in EU. 

BlueRibbon provides services based on the annual subscription paid per-month, 

but one cannot subscribe less than a year. Company doesn’t provide a clear information 

about pricing, instead providing a mail to contact sales department. It’s not a viable 

option to contact sales unless one has a registered gambling enterprise. But in general, 

a pricing is defined based on the size, scale, number of jurisdictions (different countries 

etc.) and revenue of the company requesting the services. 

Since it is a large company, they do not provide a DSS itself, but rather integrate 

it inside their products – game engines. Such game processing engines are pre-defined, 

and it is required to integrate with provided API and SDK. Also, if some company 

would like to implement or change some aspect of a certain game, it would render 

either impossible or will cost additional money, since BlueRibbon doesn’t provide a 

way to extend functionality, and can only review company’s request and implement a 

particular solution for this company “on demand” [13]. 

 

 

1.4.2 SoftSwiss Software 

 

SoftSwiss is another company providing DSS-based solutions. In analogy to 

BlueRibbon, pricing policy isn’t public and is personalized for individual customers. 

Services are also provided in the form of game engines with DSS integration. As an 

advantage, SoftSwiss provides cryptocurrency support, significantly extending the 

number of potential clients. In addition, company provides a customer with ability to 

define a desired functionality and implements it on demand, thus making their solutions 



 

14 

much more flexible and tailored to the client. However, implementation is still up to 

the SoftSwiss discretion, so it still has ownership over it and incurs additional billing 

in invoices for such a services. As an additional advantage, the service infrastructure is 

cloud-based, which in general case means more confidence in stable operations. 

As of drawbacks, the pricing information is also not available without direct 

online consultation, and for that, an EU-licensed business is required. SoftSwiss also 

doesn’t provide neither DSS nor PRNG ‘as-is’, in contrast making them available only 

as a part of bigger products.. It’s also worth mentioning that company provides its own 

payment system as well as account system, integrated directly into game engines, 

meaning impossibility to use custom-provided systems and also routine and risk of 

transferring all the customer’s users’ data into an external system. Not all businesses 

are keen to do that, rendering this step an additional complications and also creating a 

hard dependency on external provider for vital parts of the system [14]. This solution 

looks lucrative for smaller businesses, but big ones are likely to be very reluctant on 

sharing users’ data, considering this an unreasonable exposure of law-protected data. 

 

 

1.5 Conclusions to Section 1 

 

An extensive analysis and a review of concepts and approaches used in a 

development process of decision-making systems has been performed. Two main ways 

classes: expert systems and decision support systems were characterized, along with 

two main approaches to development. One mentioned use of data science, while 

another one relied on use of strictly defined algorithm, both approaches having their 

advantages and drawbacks. Specifics of the gaming & gambling domain, requiring 

DSS to comply with restrictions and run inside stateless systems, has been reviewed. 

Along this, an analysis and review of existing solutions has been performed, 

which defined BlueRibbon Software and SoftSwiss as two leading enterprises 

providing services to the market. After a review, it has been summarized that while 

these companies provide fine-grained services, are certified that their systems comply 



 

15 

with restrictions and meet the business requirements for almost every application in the 

domain and licensed to be eligible to be run under jurisdictions of most countries 

regulating the gambling, such solutions also apply a set of limitations. Almost all 

gambling DSS service providers do not provide DSS itself, instead offering a wide 

specter of games and game engines which require to be integrated into service 

receiver’s system, limiting them to the provided functionality, and increasing the cost 

of DSS monetization. 

It renders a need for a new, customizable DSS along with RNG to be 

implemented and certified, to satisfy needs of many gambling companies which seek 

a solution, which would give them an opportunity to buy the bare DSS service and 

adopt it to their specific requirements without needing to make extra expenses and 

requests to DSS provided to extend desired functionality. 

 

  



 

16 

2 REVIEW OF TOOLS AND APPROACHES 

 

2.1 Programming language of choice 

 

As a programming language of choice, Java has been taken. Such decision is 

conditioned by several factors. Java is an object-oriented programming language with 

strong typing. Its syntax is similar to C++, but in contradiction to C++, Java provides 

common root of inheritance (Object), applies more type safety, provides out-of-box 

memory allocation management called Garbage Collection (GC for short), provides 

cross-platform support thanks to use of Java Virtual Machine, more human-readable 

and significantly less verbose. In addition to it, Java provides error handling and very 

good backward compatibility [15-16]. 

Java is designated for building enterprise solutions which are meant to reliably 

work in any kind of situations, withstand high load and provide sufficient performance. 

Java pays attention to early error detection and excluding error-prone cases. Java 

compiler tends to detect a vast majority of possible errors, many of which are detected 

by other languages’ compilers only in runtime. Also, there is a new virtual machine for 

Java, called GraalVM, which allows compiling Java code not into traditional bytecode, 

but directly into a machine executable, making it platform-dependent, but reaching 

exact same performance as C-written applications. Although it worth to note, this 

requires closed-world assumption and won’t allow any dynamic class loading, thus 

excluding reflection entirely. Regarding generics, they are not a problem, since 

GraalVM compiler is smart enough to find all usages of generic methods and classes 

and generate hard typed derivative class for each [17]. 

To summarize Java advantages: 

1) Good human readability. The code is kept simple yet efficient. It lowers en-

try threshold for newcomers trying to code in Java, and is comprehensible even for 

people not familiar with programming at all. 



 

17 

2) Object-oriented approach allows to abstract from hardware-specific details 

and focus totally of business model elements while development process. This adds to 

the final product’s quality and simplifies the process. 

3) Automatic memory management, including Garbage Collector, lifts off the 

developer needs to define boundaries of objects’ existence and lifespan. Virtual ma-

chine will define and clean sections of memory which are out of scope. 

4) Strong typing adds towards reliability and performance. It allows developer 

to pre-define objects, models and interfaces which would take part in interaction. This 

applies a requirement to developer to pay more attention in cases of serialization/dese-

rialization or marshalling/unmarshalling processes, but with correct implementation, it 

makes environment defined before the launch fully or for the most part (Ahead-of-

Time or Just-in-Time compilation respectively). 

5) Java is a web-oriented programming language. There is a plethora of a very 

developed frameworks for convenient development of web applications, which provide 

most of web part with almost no specific configuration in general case. More specific 

needs require more configuration to be done, but generally, these frameworks allow to 

minimize time spent on Web API and endpoints configuration, allowing to focus on 

business logic. 

6) Very good debuggability. Java is a static programming language, thus, along 

with modern IDEs and built-in tools such as jdb, allows for a great variety of options 

while debugging, making debugging process much more comprehensible and simple. 

7) Facilitated code support. Compared to most other programming languages, 

Java provides features which make code support much easier. It owes to cross-platform 

support and backward compatibility, resulting in from little to no changes needed to 

adapt application to different platform. It also allows building platform-independent 

and hardware-independent architecture. 

8) Backward compatibility. In general case, this implies the code written for the 

current version of Java will compile into the same bytecode in all further Java Devel-

opment Kit versions. Java has been considered a world leader in the area of backward 



 

18 

compatibility, where C or Python, in contradiction to it, have differences for each ver-

sion and environment, making code portation a potentially effort-consuming task. 

9) Cross-platform support. Java follows concept “written once – run any-

where”, guaranteeing Java code can be run in an exactly same manner on virtually 

platform (actually every platform for which there is a Java Virtual Machine, will sup-

port it). 

After a consideration, it can be concluded that reviewed programming language 

fully meets development needs and is a very suitable solution for development both 

RNG and DSS, and will contribute towards their load resistance and reliability, and 

making web part working very smoothly. Inheritance and hierarchy of classes, along 

with clean and comprehensible interfaces will help to stick to SOLID principles (Single 

responsibility, Open-closed, Liskov substitution principle, Interface segregation, 

Dependency inversion) and make project more flexible, giving a lot of points for future 

modifications on demand. 

Another principles and paradigms, except SOLID, followed while development 

are: KISS, YAGNI and DRY. 

The libraries and frameworks used while the development process include, but 

are not limited to: Spring Boot, projectlombok, apache-commons-lang3, springdoc-

openapi, openfeign, flyway, jackson-databind, Junit 5. 

It has been decided to use Apache Maven as a dependency manager and 

assembly automatization tool, particularly because of declarative approach to 

dependency definitions and usage of xml-like code style, and good readability. 

 

 

2.2 IDE of choice 

 

For the convenience of the development process, it has been decided to make 

use of Intellij IDEA IDE (Integrated Development Environment). 

The first version of Intellij IDEA has been released in the January of 2001 and 

has rapidly spread among developers, becoming more and more popular. It is often 



 

19 

considered as the first IDE with the wide set of integrated tools for refactoring and 

debugging, with also integrated tools for Version Control Systems. Design of the 

environment is designed to increase programmers’ productivity [18]. 

IDE is distributed in the form of Software as a Service model. Subscription 

offers monthly, annual or 3-years plans. Also, starting from version 9.0, there is a 

community edition of Intellij IDEA with open code. Source code of Intellij IDEA is 

distributed under Apache 2.0 license. Executable binary packages are present for 

Linux, Mac OS X and Windows. [19] 

 

 

2.3 Version control system of choice 

 

Among version control systems, it has been decided to choose Git as it is one 

of the most powerful tools for version tracking. 

Git allows not only to securely and conveniently store versioning history of the 

project; it also provides tools that will help to keep project history clean and 

comprehensible. Such tools include squashing, also known as interactive rebasing, and 

cherry-picking. Git also provides all the basic features a VCS should provide, such as 

versioning, branches, merging, rebasing etc. [20]. 

One of the most important advantages of Git among the analogues is that it 

provides out-of-box integrations with cloud-based remote repository storages, such as 

GitHub and GitLab, both of them being the most famous repositories in the world and 

being de-facto standard in the domain of programming and cloud-based VCS solutions. 

All the Git, GitHub and GitLab provide most of the required functionality for 

free. Git is an opensource project. GitHub and GitLab are powerful tools, providing 

not only support of VCS, but services such as CI/CD, teamwork, project spaces, 

statistic tracking and much more, making them very convenient for the development. 

The one downside here is that many of these powerful and convenient features require 

either paid subscription or a tedious configuration, e.g., one can buy a subscription and 

conveniently configure CI, paying attention only to the logic of CI itself, or can go on 



 

20 

with installing and configuring own CI computational environment, forwarding ports, 

and other parts of routine, making such approach “cheap yet angry”. 

 

 

2.4 Conclusions to Section 2 

 

In this section, a review of the technologies to be used during the development 

process has been performed. The advantages of chosen programming language, 

frameworks, libraries, IDE, VCS and other tools have been described. To conclude, the 

following main stack will be used in the development process: 

- Java 11; 

- Spring Boot; 

- Lombok; 

- Flyway; 

- JPA; 

- Apache Maven; 

- Intellij IDEA; 

- Git; 

- GitLab. 

An extensive analysis showed this stack fully meets development requirement 

and will contribute towards the final product’s quality. 

 

  



 

21 

3 MODULES’ DESIGN AND IMPLEMENTATION 

 

3.1 Design of PRNG module 

 

The first step to development of the module is defining its constraints and 

limitations, as well as expected performance. For this module, in addition to some 

programmatical limitations, there are also legal compliance requirements, which imply 

additional restrictions. 

 

 

3.1.1 Defining legal & technical requirements 

 

After a research, it has been defined that RNG has to comply with a set of 

restrictions to render viable for gambling industry. Among them, random number 

generator module must be stateless, must rely on a cryptographically strong core PRNG 

algorithm and must produce results which should pass a set of tests. Among them are: 

entropy test, correlation test, shuffledeck entropy test and diehard test. In order to 

receive a certification, an audit should be conducted by a certified body. For the audit, 

said body will require the following data sets: 

- 3 samples 3 million of data each with numbers for each of the ranges: 0-33;0-

36;0-51;0-66;0-99;0-500;0-999; 

- 3 samples with 3 million rows with 16 digits each (48 million data in total per 

sample) in range 0-255; 

- 3 samples with 3 million shuffled decks (for decks of 52 cards). 

Another requirement is to provide an ability to the auditing party to perform 

independent tests for gaining such samples independently. During audit, the auditor 

will perform a full review of the source code and deployment environment, to emulate 

exact same situation and check against possible hardware issues which might interfere 

randomness of generated data. 



 

22 

The system should communicate over any TCP-compliant protocol and has to 

be deployed either on the same physical instance, or inside the subnet of the main 

system cluster in order to keep latency as low as possible. 

The system should be audited and tested on randomness inside its deployment 

environment in order to assure the same behaviour and eliminate any possibility of 

impacting the program outcomes. 

 

 

3.1.2 Architecture design 

 

It has been decided to develop a module in a form of a standalone web 

application, with the only external API endpoint, allowing to retrieve a random number 

generator. The system is planned to be designed with an extensive use of interfaces, 

allowing for abstraction and making possible future substitution of components a very 

easy process, requiring only to implement said modules and inject them, with no other 

code being changed. 

A core PRNG algorithm implementation chosen for the project is Oracle’s 

SHA1PRNG implementation. 

It has been decided to provide out-of-the-box ability for containerization, along 

with support of AWS ECS (Amazon Web Services Elastic Container System) or AWS 

Fargate (Amazon Web Services container system with computational resources-as-a-

service) deployment. 

Such approach will make the module an easily scalable, and will grant a wide 

set of options for extension. 

The service will provide simple header-based authorization with predefined 

key, allowing for easy integration yet granting some defense against DDoS attacks, 

which are otherwise virtually impossible, since the system itself is designated to be run 

inside private subnetworks and not be otherwise accessible. 



 

23 

It has been decided to make service configuration externalized, to provide even 

better flexibility and making it possible to re-configure some parts without modifying 

the code. 

It has been decided to cover vital functionality, such as number generations and 

boundaries acceptance, with tests. Junit 5 will be used for testing purposes. 

Modules for data samples’ generations will be shipped along the main RNG 

module, including necessary libraries and scripts, to make a convenient use of them. 

 

 

3.2 Design of decision support module 

 

To be eligible for application in financial and gambling industries, a DSS must 

comply with a certain set of rules and constraints, which comprise the following: 

− system must be stateless whenever related to the process of making 

decisions; 

− system must be able to withstand 10 000 concurrent requests; 

− system must make use of certified RNG; 

− system must take in account a set of parameters when making a decision; 

− system must guarantee an entropy of each individual decision; 

− system should store every input and output it processes in order to gather 

historical data to be sent to legal authorities for review of correct functioning of the 

system over time; 

− system must keep convergence of the total of individual decisions to the 

general distribution (without having access to said distribution since being stateless). 

With all these constraints being defined, it has become clear that the most 

significant requirement to proceed is to develop a mathematical approach which would 

allow to solve the problem of supplying decisions which are random individually yet 

convergent to the general distribution on big scales. 

 

 



 

24 

3.2.1 Deriving mathematical component for volatility-based entropy 

 

The problem raised here is how to guarantee totally independent from each 

other so the play is always fair and in the same time provide a house advantage in the 

long run, while knowing nothing about previous decisions [21-22]. It is hard to 

guarantee it if there is no insight on a historical data, so system cannot keep and define 

current state of a general distribution, whereas general distribution is comprised of total 

collected historical data. Conventional statistical methods do not provide ready 

solutions to implement a convergency to a distribution according to the big numbers 

rule without knowing nothing about one and keep an entropy on a high level 

simultaneously [23]. One of the parameters characterizing a degree of possibility of 

deviation of the future data from the historical data distribution used in financial 

domain is a volatility [24]. 

Speaking generally, volatility is an index of randomness, describing fluctuation 

range for time series. It means the more volatility is, the less predictable the future 

outcome will be. In the current implementation, volatility will be used as an abstract 

reversed value, instead of traditional percentage representation. Possible volatility 

values will vary from 1 to 99 inclusive, and will describe maximally possible deviation 

of result from the expected one [25]. For all the probabilistic calculations, including 

multiplications, a Bayes rule for probabilities will be used [26]. 

In general case, volatility of the distribution X can be expressed in the following 

way: 

 

𝑋𝑚𝑒𝑎𝑛 = 𝛴1
𝑛 𝑥𝑖 𝑛⁄  ,     (3.1) 

 

𝜎 = √(1 (𝑛 − 1)⁄ ∗ 𝛴1
𝑛(𝑥𝑖 − 𝑋𝑚𝑒𝑎𝑛)

2),    (3.2) 

where 𝜎 – volatility, 

 𝑛 – number of elements in distribution, 

 𝑥𝑖 – і-th member of distribution, 

 𝑋𝑚𝑒𝑎𝑛 – mean of the distribution. 



 

25 

One of the approaches which might work for generating local values satisfying 

convergence to the general distribution is to generate candidates being potentially 

eligible to become members of the general distribution. With such approach, it seems 

it could be possible to keep general tendency towards the target function or historical 

data distribution, while also granting maximum possible differentiation of individual 

results. 

In case of DSS for gambling, the characteristics one can operate with include 

winning parameters. These usually include desired average, and desired minimum and 

maximum wins the system should perform. This should be not a hard limit, but rather 

a value to which the system should aim. 

Let’s define the following constraints: 

let Xmean= averageWin, and minWin<xi<maxWin, and n is a number of values 

to generate for a sample, then: 

 

𝑛 ∗ 𝜎2 = 𝛴1
𝑛(𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)

2    (3.3) 

 

Assume there is a simple case for better understanding. The least value of n to 

make formula meaningful and satisfactory for full explanations is 3:  

let n=3, then: 

 

3 ∗ 𝜎2 = (𝑥1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2 + (𝑥2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)

2 + (𝑥3    −

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)2    (3.4) 

 

Then it is required to define, that each value comprising the sample will be 

generated the following way: 

𝑥1 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝑚𝑖𝑛𝑊𝑖𝑛,𝑚𝑎𝑥𝑊𝑖𝑛)   (3.5) 

 

For every next value we must take into account all previously generated values, 

to ensure the sample will have statistical behaviour and parameters close to the ones of 



 

26 

the general sample. Taking this into account, the formula for 𝑥2 will have the following 

form: 

𝑥2 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝑚𝑖𝑛𝑊𝑖𝑛,𝑚𝑎𝑥𝑊𝑖𝑛 − 𝑥1)  (3.6) 

 

It is also required to have a different equation for calculating the last element. 

Here it is 3rd one, but for n=10 it will be the 10th one. It should be calculated as the 

theoretical remainder after generating all previous numbers in the sample’s sequence. 

The formula will have the following form: 

 

𝑥3 = √(3 ∗ 𝜎
2 − (𝑥1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)

2 − (𝑥2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2)            +

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛,       (3.7) 

 

To mention, the following constraint applies for sample of size of 3: 

 

(𝑥1 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2 + (𝑥2 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)

2 < 3 ∗ 𝜎2 (3.8) 

 

The solution can be transformed the following way: 

given the maximum and minimum desired boundaries and average value, it is 

required to generate a sequence of eligible deviations for each element in the sample. 

If apply a sequence of generated deviations to the average, a series will be received, 

where each member will comply with all restrictions to claim a place in the general 

distribution. In other words, these series will form eligible subset of the general 

distribution, satisfying all the constraints, yet providing enough randomness by using 

random number while generation, which means even on big distributions it is unlikely 

for each individual value to be exact result of using correlated values of the distribution, 

granting independence and uniqueness for each particular value. 

Said deviation can be expressed in the following form: 

 

(𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2 = 𝜂𝑖      (3.9) 

 



 

27 

For n=3 the following will be fair: 

 

3 ∗ 𝜎2 = 𝜂1 + 𝜂2 + 𝜂3, 𝜂1 > 0, 𝜂2 > 0, 𝜂3 > 0⏟                 (3.10) 

 

From (3.5), (3.6), (3.7) and (3.10), the following equations for each of the 

elements for n=3 can be derived: 

 

𝜂1 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚(0,3 ∗ 𝜎
2)    (3.11) 

𝜂2 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚(0,3 ∗ 𝜎
2 − 𝜂1)   (3.12) 

𝜂3 = 3 ∗ 𝜎
2 − 𝜂1 − 𝜂2      (3.13) 

 

This allows to generalize formulas to define universal equations for every ith 

element of the sample where n can take any value on plane of natural numbers. Taking 

this into account, every 𝜂𝑖 except i=n for every 𝑛 ∈ 𝑁 the following is true: 

 

𝜂𝑖 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚(0, (3 ∗ 𝜎
2 − 𝛴1

𝑘𝜂𝑘)),     

𝑖 ∈ [1, 𝑛 − 1], 𝑘 ∈ [1, 𝑖 − 1]     (3.14) 

 

And for cases i=n the following equation should be used: 

 

𝜂𝑛 = 3 ∗ 𝜎
2 − 𝛴1

(𝑛−1)
𝜂𝑖       (3.15) 

 

Having a need to define a deviation, a (3.9) can be transformed into the 

following form: 

 

|𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛| = √𝜂𝑖,    (3.16) 

 

  



 

28 

Which gives two roots: 

 

𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛 = √𝜂𝑖; 𝑥𝑖 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛 = −√𝜂𝑖  (3.17) 

or 

𝑥𝑖 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛 ± √𝜂𝑖     (3.18) 

 

From (3.9) and 𝑚𝑖𝑛𝑊𝑖𝑛 < 𝑥𝑖 < 𝑚𝑎𝑥𝑊𝑖𝑛 , additional constraints can be 

formulated: 

 

0 < 𝜂𝑖 < (𝑚𝑎𝑥𝑊𝑖𝑛 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2   (3.19) 

and 

0 < 𝜂𝑖 < (𝑚𝑖𝑛𝑊𝑖𝑛 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝑖𝑛)
2   (3.20) 

 

(3.19) and (3.20) must be used to ensure values are generated in the correct 

fashion, but a very important note here not to just narrow the possible diversity of 

solutions to (3.20), a sign of the resulting value should be taken into account (applying 

(3.18). 

With that, mathematical problem for defining random individually decisions 

simultaneously convergent to the general distribution with the big numbers rule in 

stateless systems has been solved. There is a similar approach for applications in an 

investment area [27], but it doesn’t satisfy all the constraints a problem comprises of, 

because it only operates based on historical data, and outputs pure entropic values, 

resulting in it cannot guarantee passing condition of sufficiency of each returned 

element to belong to the general distribution. 

Also, there is an approach with creating self-regulated series of numbers [28], 

but mentioned implementation doesn’t take into account a set of constraints which 

apply to each individual element over the course of changing its ordinal number, or 

with increasing size of the generated sample. However, this method considers usage of 

different parameters to be guided by while generating the series. Part of these 



 

29 

parameters, significant to the area of application, such as average and boundaries have 

been successfully applied in the developed algorithm of series generation. 

The result of applying the following set of equations has been extensively 

tested, with also minor modifications in coefficients and sizes of samples. Resulting 

graph with impact of volatility over time and convergence to the general distribution is 

shown on Figure 3.1. 

 

 

Figure 3.1 – Example of statistical decrease of probability of the positive decision 

due to increasing value of volatility. Tests are performed for a set of different 

candidates to the final formula, each set containing 10’000’000 unique generated data 

 

This graph has been plotted using Kibana. Kibana is a very powerful tool which 

allows to process huge amounts of data with relative ease [29]. Legend to the right 

provides mathematical notation of each plotted graph, making it easier to differentiate 

on most suitable solution for a hands-on application. All of these formulae are intended 

to achieve a smooth non-linear sigmoidal inverse dependency between volatility in 

range of 1 to 99 both inclusive, and a probability to grant a positive decision in case of 

previous submodule qualified an event for a positive decision. 

 

  



 

30 

3.2.2 Deriving mathematical component for impact of the input parameters 

 

After a solution to provide individually independent yet generally convergent 

sequence of decisions has been derived, there is a need to define a way to apply an 

impact of the input parameters. A detailed description of the problem is explained 

below. 

First thing to do is to define is a way a final impact should look like. Having 

the following constraints: 

- minWin – minimal amount of winning value possible; 

- maxWin – maximal amount of winning value possible; 

- avgWin – average amount of winning value. The overall winning value mean 

of all the winning events should approach to this value. 

- the average wins should lay inside bounds of 𝑎𝑣𝑔𝑊𝑖𝑛 ± 𝑎𝑣𝑔𝑊𝑖𝑛 ∗

15% 100⁄ % 

Main concerns here include: 

- Mathematical expectation should be followed without context, i.e., it is not 

allowed to store the context, and the formula should be implemented to approach 

specified mathematical expectation programmatically. 

- The probability of impact on positive decision result: 

◦ should be lowest around minimal positive decision value; 

◦ should positively and non-linearly increase inside the average positive 

decision bounds; 

◦ should have the peak probability in the value of average win; 

◦ whilst should not be high enough to make other areas of probabilities non-

considerable; 

◦ should gradually decrease after 15% past average win; 

◦ should rapidly increase around maximal win (some predefined small range 

related to the whole range of possible values just before maximal win should 

exponentially increase the probability of positive decision); 



 

31 

◦ the positive decision probability should be affected by volatility (this point 

here could be redundant as the volatility already defines a formula which affects 

positive decision probability in its own fashion) The point of concern here is that it is 

not defined whether volatility will be passed into or defined based on the win capping 

& conditions; 

- From the above, the resulting ruleset is very likely to consist of at least 

two formulas, possibly more. The formulas will need to describe following fashions: 

◦ increase from minWin to (1-0.15)*avgWin; 

◦ increase, peak and decrease from (1-0.15)*avgWin to (1+0.15)*avgWin; 

◦ decrease from (1+0.15)*avgWin to (1-x)*maxWin; 

◦ rapid increase from (1-x)*maxWin to maxWin; 

These points raise a set of issues which will be faced while development and 

must be resolved: 

1) What to do if either maxWin or minWin are in range of avgWin? To use one 

of their formulas (and which?) or define specific ones for such cases? 

2) There is a contradiction: how to assure the positive solution will happen 

before or on the maximal allowed value, but never exceed it, along with avoiding 

reaching 100% probabilities on any numbers from range, since it might add unfair 

advantage and be used to predict a certain positive decision if properly analyzed by 

players or insider information is gained? 

3) If the positive solution didn’t occur on the whole range, what to do? How to 

handle situations if the accumulated amount actually exceeding maxWin, and hence, 

allowed amount? 

The principal sketch of ranges of input values impact is depicted on Figure 3.2. 

It describes an intended distribution of probability over the game progression, and is 

based on breakpoints derived from the initial configuration, making use of parameters 

such as minimal expected win, maximal expected win and average expected win, 

basically producing a graph with similarities to a bell curve, but adjusting areas where 

it is intended by business and/or legal requirements. 



 

32 

For some parameters to take place and effectively affect resulting graph in 

terms of computer calculations, we’ll add constraints that will ensure a number’s 

calculation precision can be treated without considerable loss of accuracy: 

 

 

Figure 3.2 – Sketch of the planned impact of input on the decision 

 

1) minWin, maxWin and avgWin are all positive integer numbers (natural 

numbers), or positive numbers with floating point (rational numbers). 

2) The minWin will be treated a hard cap, the value of minWin will have the 

lowest probability to happen, the values less than minWin will have 0% probability to 

happen. 

3) The maxWin will be treated a soft cap, i.e., the probability from start of 

maxWin’s neighbourhood to maxWin will drastically increase almost to 100%, but 

less. Then the function will approach 100% probability, but will never hit 100% 

probability. 

4) If minWin is inside the avgWin neighbourhood with size of 15% of range , 

the function for avgWin will be used, the minWin function and gradual ascent function 

will be neglected, but the values before minWin, even if inside avgWin-15% range, 

will be treated as zero probability. 



 

33 

5) If maxWin is inside the avgWin neighbourhood with size of 15% of range, 

the function of gradual descent from avgWin+15% to maxWin’s neighbourhood will 

be omitted, and the function of exponential ascent to almost 100% probability and then 

infinite approach to 100% with no actual reaching. 

6) The neighbourhood for minWin and MaxWin will be defined as 1% of total 

range (so if the range is 1000 then the neighbourhood will be defined as 10), but should 

be never less than 2, i.e., if the range is 100, the neighbourhood will be 2, not 1. 

7) The neighbourhood of avgWin will be calculated as 15% from avgWin, 

meaning if avgWin is 100, then the neighbourhood will be from 85 to 115 inclusively. 

The mathematical expectation will look in the following manner: 

 

𝐸(𝑥) = ∑ 𝑥𝑖
𝑛
1 𝑝𝑖 , 𝑖 ∈ [1; 𝑛],    (3.21) 

where  𝑥𝑖 is a partial case of all positive values of x, 𝑥 ∈ 𝑄; 𝑥 ≥ 0;⏟        
 

 

𝑝𝑖 is a probability of 𝑥𝑖;  𝑝𝑖 ∈ [0; 1]. 

It can also be represented as 

 

𝐸(𝑥) = ∑ 𝑥𝑖
𝑛
1 𝐹(𝑥𝑖),     (3.22) 

 where F is a probability function defined on range [𝑥1; 𝑥𝑛] 

 

In a general case, the mathematical expectation for equal probabilities of all 

values, will have the form of 

 

𝐸(𝑥) =
1

𝑛
∑ 𝑥𝑖
𝑛
1 ,       (3.23) 

 

actually, being the mean value of all the individual values. 

But for the formula to work correctly, it cannot be reduced to mean. It is 

required to define the following functions: 

- f(x) – is a probability function for range [minWin;minWin+1%*range]; 



 

34 

- g(x) – is a probability function for range (minWin + 1%*range;avgWin-

15%); 

- h(x) – is a probability function for range [avgWin-15%;avgWin+15%]; 

- i(x) – is a probability function for range (avgWin+15%;maxWin-1%*range); 

- j(x) – is a probability function for range [maxWin-1%*range; maxWin]; 

- k(x) – is a probability function for range (maxWin; +∞). 

Assuming these definitions, the final mathematical expectation function can be 

represented for this case (assuming minimal step is 0.01): 

 

𝐸(𝑥) = ∑ 𝑥𝑖
𝑚𝑖𝑛𝑊𝑖𝑛+0.01∗𝑟𝑎𝑛𝑔𝑒
𝑚𝑖𝑛𝑊𝑖𝑛 𝑓(𝑥𝑖) + ∑ 𝑥𝑖

(1−0.15)𝑎𝑣𝑔𝑊𝑖𝑛−0.01
𝑚𝑖𝑛𝑊𝑖𝑛+0.01∗𝑟𝑎𝑛𝑔𝑒+0.01 𝑔(𝑥𝑖) +

+ ∑ 𝑥𝑖
(1+0.15)𝑎𝑣𝑔𝑊𝑖𝑛
(1−0.15)𝑎𝑣𝑔𝑊𝑖𝑛 ℎ(𝑥𝑖) + ∑ 𝑥𝑖

𝑚𝑎𝑥𝑊𝑖𝑛−0.01∗𝑟𝑎𝑛𝑔𝑒−0.01
(1+0.15)𝑎𝑣𝑔𝑊𝑖𝑛+0.01 𝑖(𝑥𝑖) +

+∑ 𝑥𝑖
𝑚𝑎𝑥𝑊𝑖𝑛
𝑚𝑎𝑥𝑊𝑖𝑛−0.01∗𝑟𝑎𝑛𝑔𝑒 𝑗(𝑥𝑖) + ∑ 𝑥𝑖

+∞
𝑚𝑎𝑥𝑊𝑖𝑛+0.01 𝑘(𝑥𝑖);

 (3.24) 

The next step is to define each of the probability functions listed above. 

To do this, we need to also define the border probabilities each of the ranges 

would be allowed to have. 

That is, for f(x) the probability would be set from 0% to 10%; 

- for g(x) the probability would go from 10% to 30%; 

- for h(x) the probability would go from 30% to 85%, then again to 30%; 

- for i(x) the probability would go from 30% to 10%; 

- for j(x) the probability would go from 10% to 95%; 

- for k(x) the probability would go from 95% to 99.99%. 

After the measures are defined, the formulas can be chosen. Important to note, 

there is no rule or law which can be used to define which formula to use. The formulas 

will be chosen empirically. 

For empiric tests to be actually graphically represented, let the parameters have 

been set to the following values:  

minWin = 8.5 ; avgWin = 30; maxWin = 45 ; (range = 45 – 8.5 = 36.5) 

Here is described a proposal of general function form with some optimization 

to lift off CPU load. For f(x), it is proposed to use a quadratic equation in the form 



 

35 

of𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, where a<0, and a(x-𝑓(𝑥) = 0.1 − 2𝑥2 + 𝑥; to make formula 

more suitable to required constant translations, it will be represented in form 

±(𝑎𝑥– 𝑏)2. It will have the final form:  

 

𝑓(𝑥) = −(𝑎𝑥 − 𝑎(𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒))
2
+ 0.1,  (3.25) 

where a is a free parameter which will straightly affect steepness of function gradient; 

  x is an actual value of the current accumulated value; 

  minWin is the least value at which positive decision should be possible; 

 

Also, the function should cross the point (minWin;0), resulting in 

 

−(𝑎 ∗ 𝑚𝑖𝑛𝑊𝑖𝑛 − 𝑎(𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑒))
2
+ 0.1 = 0; 

(𝑎 ∗ 𝑚𝑖𝑛𝑊𝑖𝑛 − 𝑎(𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑒))
2
= 0.1; 

(𝑎 ∗ 𝑚𝑖𝑛𝑊𝑖𝑛 − 𝑎 ∗ 𝑚𝑖𝑛𝑊𝑖𝑛 − 𝑎 ∗ 0.01𝑟𝑎𝑛𝑔𝑒)2 = 0.1; 

(−𝑎 ∗ 0.01𝑟𝑎𝑛𝑔𝑒)2 = 0.1; 

𝑎2 ∗ 0.0001 ∗ 𝑟𝑎𝑛𝑔𝑒2 = 0.1; 

𝑎2 =
0.1

0.0001 ∗ 𝑟𝑎𝑛𝑔𝑒2
; 

𝑎 =
√0.1

0.01𝑟𝑎𝑛𝑔𝑒
; 

 

 thus, resulting in the final formula will take the form: 

 

𝑓(𝑥) = −(
√0.1

0.01𝑟𝑎𝑛𝑔𝑒
(𝑥 − (𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒)))

2

+ 0.1 (3.26) 

 

The formula for the g(x) would likely be 𝑔(𝑥) = 𝑘𝑥 + 𝑏 in general form; for 

the needs of the task, it will be transformed to the form of  

 



 

36 

𝑔(𝑥) = −𝑎 ∗ (𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒) + 𝑎𝑥 + 0.1,  (3.27) 

where a is a free coefficient which will affect the slope of the actual line; 

Since it is known that the function should end at the point ((1-0.15)avgWin; 

0.3), a can be calculated as following: 

 

−𝑎 ∗ (𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒) + 𝑎 ∗ (1 − 0.15)𝑎𝑣𝑔𝑊𝑖𝑛 + 0.1 = 0.3; 

𝑎(0.85𝑎𝑣𝑔𝑊𝑖𝑛 − (𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒)) = 0.2; 

𝑎 =
0.2

0.85𝑎𝑣𝑔𝑊𝑖𝑛 − (𝑚𝑖𝑛𝑊𝑖𝑛 + 0.01𝑟𝑎𝑛𝑔𝑒)
; 

 

With this, the final formula for g(x) takes the following form: 

 

𝑔(𝑥) =
0.2 (𝑥−(𝑚𝑖𝑛𝑊𝑖𝑛+0.01𝑟𝑎𝑛𝑔𝑒))

0.85𝑎𝑣𝑔𝑊𝑖𝑛−(𝑚𝑖𝑛𝑊𝑖𝑛+0.01𝑟𝑎𝑛𝑔𝑒)
∗ +0.1;  (3.28) 

 

The next function is likely to be a parabola which crosses points 

(0.85*avgWin;0.3), (avgWin;0.85) and (1.15*avgWin;0.3); that is, the vertex will be 

in (avgWin;0.85), and it is enough to ensure function will cross (0.85*avgWin;0.3); so, 

having derived similar formulas, the formula will be  

 

ℎ(𝑥) = −𝑎2(𝑥 − 𝑎𝑣𝑔𝑊𝑖𝑛)2 + 0.85,    (3.29) 

where a is a parameter which would fit formula to cross (0.85*avgWin;0.3) 

It can be derived in the following manner: 

 

−𝑎2(0.85𝑎𝑣𝑔𝑊𝑖𝑛 − 𝑎𝑣𝑔𝑊𝑖𝑛)2 + 0.85 = 0.3; 

−𝑎2(−0.15𝑎𝑣𝑔𝑊𝑖𝑛)2 = −0.55; 

|0.15𝑎𝑣𝑔𝑊𝑖𝑛|𝑎 = √0.55; 

𝑎 =
√0.55

|0.15𝑎𝑣𝑔𝑊𝑖𝑛|
=
√0.55

±0.15
𝑎𝑣𝑔𝑊𝑖𝑛 =

√0.55

0.15𝑎𝑣𝑔𝑊𝑖𝑛
 

 



 

37 

Having that, and taking into account that negative coefficient value isn’t 

possible due to constraints, the final parabolic formula can be represented in the 

following way: 

 

ℎ(𝑥) =
−0.55

(0.15𝑎𝑣𝑔𝑊𝑖𝑛)2
(𝑥 − 𝑎𝑣𝑔𝑊𝑖𝑛)2 +  0.85 = 

=
−24.(4)

𝑎𝑣𝑔𝑊𝑖𝑛2
∗ (𝑥 − 𝑎𝑣𝑔𝑊𝑖𝑛)2 + 0.85    (3.30) 

 

The i(x) can be made very similar to g(x), i.e., it can be represented as 

 

𝑖(𝑥) =
0.2(𝑥−(𝑚𝑎𝑥𝑊𝑖𝑛−0.01𝑟𝑎𝑛𝑔𝑒))

1.15𝑎𝑣𝑔𝑊𝑖𝑛−(𝑚𝑎𝑥𝑊𝑖𝑛−0.01𝑟𝑎𝑛𝑔𝑒)
∗ +0.1,  (3.31) 

 

It will cross points (1.15avgWin;0.3) and (maxWin-0.01*range;0.1); 

 

After a sequence of trial and error, it has come that functions j(x) and k(x) can 

be united into one formula, which can be described as   

 

𝑗(𝑥) =
−1

100(𝑥−(𝑚𝑎𝑥𝑊𝑖𝑛−0.01𝑟𝑎𝑛𝑔𝑒))
+ 1,     

𝑙𝑖𝑚
 
𝑗 (𝑥) = 1, 𝑥 ∈ [𝑚𝑎𝑥𝑊𝑖𝑛 − 0.01𝑟𝑎𝑛𝑔𝑒;+∞].   (3.32) 

 

After all the formulas for different ranges were defined, they had to be plotted. 

GeoGebra [30] has been selected a plotting tool, since it allows flexible configuration 

and definition of sets of different formulas, with ability to specify ranges for each 

formula. Resulting graph is represented on the Figure 3.3. 

 



 

38 

 

Figure 3.3 – Scaled graph of united functions restricted to defined ranges 

 

Reduced functions will have the form with ranges: 

 

• 

𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ = 𝑚𝑖𝑛𝑊𝑖𝑛 ∨ 𝑠𝑒𝑒𝑑 + 0.01𝑟𝑎𝑛𝑔𝑒;

𝑓(𝑥) = 0.1 − 1000 (
𝑥−𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ

𝑟𝑎𝑛𝑔𝑒
)
2
; 𝑥 ∈ [𝑚𝑖𝑛𝑊𝑖𝑛 ∨ 𝑠𝑒𝑒𝑑;𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ];

 

• 

𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ = 𝑚𝑖𝑛𝑊𝑖𝑛 ∨ 𝑠𝑒𝑒𝑑 + 0.01𝑟𝑎𝑛𝑔𝑒;

𝑔(𝑥) =
0.2

0.85𝑎𝑣𝑔𝑊𝑖𝑛−𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ
∗ (𝑥 − 𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ) + 0.1;

𝑥 ∈ [𝑚𝑖𝑛𝑊𝑖𝑛𝑁𝑏ℎ; 0.85𝑎𝑣𝑔𝑊𝑖𝑛];

 

• ℎ(𝑥) = −24.4444 (
𝑥−𝑎𝑣𝑔𝑊𝑖𝑛

𝑎𝑣𝑔𝑊𝑖𝑛
)
2
+ 0.85; 𝑥 ∈ [0.85𝑎𝑣𝑔𝑊𝑖𝑛; 1.15𝑎𝑣𝑔𝑊𝑖𝑛]; 

• 

𝑚𝑎𝑥𝑊𝑖𝑛𝑁𝑏ℎ = 𝑚𝑎𝑥𝑊𝑖𝑛 − 0.01𝑟𝑎𝑛𝑔𝑒;

𝑖(𝑥) =
0.2

1.15𝑎𝑣𝑔𝑊𝑖𝑛−𝑚𝑎𝑥𝑊𝑖𝑛𝑁𝑏ℎ
∗ (𝑥 − 𝑚𝑎𝑥𝑊𝑖𝑛𝑁𝑏ℎ) + 0.1;

𝑥 ∈ [1.15𝑎𝑣𝑔𝑊𝑖𝑛;𝑚𝑎𝑥𝑊𝑖𝑛𝑁𝑏ℎ + 0.015𝑟𝑎𝑛𝑔𝑒];

 

• 𝑗(𝑥) = 1 −
0.01

𝑥−(𝑚𝑎𝑥𝑊𝑖𝑛−0.01𝑟𝑎𝑛𝑔𝑒)
; 𝑙𝑖𝑚 𝑗 (𝑥) = 1; 

       𝑥 ∈ [𝑚𝑎𝑥𝑊𝑖𝑛𝑁𝑏ℎ + 0.025𝑟𝑎𝑛𝑔𝑒;+∞] 

 



 

39 

After an implementation of these formulas by means of programming language, 

a way to collect and visualize data has been implemented, the data was collected, and 

then analyzed, then fixes applied, analyzed, and after iterative fixes of all the errors, 

the final data has been visualized. The diagram of the plot received by applying the 

final formula set to real data is shown on Figure 3.4. 

 

 

Figure 3.4 – Graph of empiric data representing positive decisions to negative 

decisions ratio according to the final formula set 

To check if final mean values are in range of expected, they should be 

calculated as following: 

 

𝐸(𝑥) =
∑𝑥𝑖𝑛𝑖

𝑁
=

1

𝑁
∑𝑥𝑖 𝑛𝑖;  ∑ 𝑛𝑖 = 𝑁;    (3.33) 

  where 𝑛𝑖 is a total amount of occurence of 𝑥𝑖 

            and N is a total number of all the occurrences 

 

Said formula is easily derived from (3.23). 

Calculation of mathematical expectation showed it is in the expected range, 

meaning this set of formulae fully meets the requirements. 

 

 



 

40 

3.2.3 Architecture choices 

 

It has been decided to develop a module in a form of a web application with a 

set of API endpoints allowing to process individual inputs. The system is planned to 

be designed with an extensive use of interfaces, allowing for abstraction and making 

possible future substitution of components a very easy process, requiring only to 

implement said modules and inject them, with no other code being changed. 

The developed system must store all the data it processes for further reporting 

to legal authorities and certificating bodies, but it must be avoided from usage in the 

process of making decisions. To solve this problem, it has been decided to make 

components of the module highly isolated, and store all the required data in the 

database. 

The system will be designed to provide the same ability for containerization 

and deployment on AWS as the RNG module does. Such approach will make the 

module an easily scalable, and will grant a wide set of options for extension, also 

making it easier to integrate with RNG. 

The service is meant to be run only inside private networks with no external 

interaction, lifting off the need to implement security module. 

It has been decided to make the service configuration externalized, to provide 

even better flexibility and making it possible to re-configure some parts without 

modifying the code. The main functionality will be covered with tests, via usage of 

Junit 5 for testing purposes. The designed system should be able to withstand high load, 

up to 10000 concurrent requests, and be suitable for horizontal scaling. 

It has been defined that the orchestrator module will also be implemented with 

a primary focus for AWS integration, and will perform statistic checking and scaling 

tasks issuing with the use of AWS CLI or AWS Development Kit. It’s role implies 

managing redirection of events and requests to specific jackpots modules according to 

specific games, as well as deploying new or removing old instances of jackpot from 

environment in order to optimize resource utilization. 



 

41 

3.3 Implementation of modules 

 

In this section, an implementation process of the modules described above is 

provided. It contains main points of interests, as well as required diagrams utilized in 

the development process. It also contains a section describing an implementation of a 

statistic module. There is not design section for it, since it is a straightforward from 

architecture and programming solutions point of view, but it’s database relational 

structure and some specifics of implementation are still relevant. 

 

 

3.3.1 DSS implementation 

 

Since all the mathematical blockers have been resolved, it is possible to develop 

a programming implementation of sought solution. Since the solution does not bear the 

business value on itself, it was designed to be a part of a real-life flow. The workflow 

diagram for the module will have the logic as shown on Figure B.1. Full component 

diagram is represented on Figure B.2. Full class diagram for the DSS module is 

represented on Figure B.3. 

From the diagram, it can be observed that the service is planned to be run inside 

the cluster, with orchestrator/loadbalancer handling requests and delegating them to 

the least loaded instances of DSS. While processing the request DSS requests a set of 

random numbers from RNG, defines the result for the request, stores it to the database 

for historical data reporting purposes, and then returns a notification to the requester in 

case system has made a positive decision. Otherwise, system just stores the data, with 

no notifications being sent. 

In case of successful decision, DSS also triggers backend to activate payment 

module in order to process transaction. 

The DSS module itself will hence consist of several submodules with distinct 

purpose each. Among these: 

- core module, designated to request processing and decision making; 



 

42 

- feign RNG web module, designated to request random numbers from RNG 

on demand from core module; 

- web module providing API for interactions with the service; 

- database module for operating with database and storing historical data; 

- feign notification web module for sending notification to the requester. 

- Also, since the DSS module needs a way to be configured directly by 

customers and clients, there is a requirement to develop the following submodules: 

- web module providing API for DSS configuration; this one should be called 

‘Backoffice API’; 

- client-side module for operating with ‘Backoffice API’. 

If refer to constraints to the DSS module, it requires a way to gather statistical 

data to compute an accuracy and authenticity of current state of the system and 

decisions it makes. This implies an additional list of submodules is required to be 

implemented: 

- module for real input emulation; 

- module for collection of the results and performing statistical calculations. 

Provided all the modules for development are listed, they were grouped where 

applicable to create a full and harmonical view of the system to be developed and a 

diagram of principal architecture of the DSS module is represented on Figure 3.5. 

According to the diagram, all the submodules have been grouped into 3 most 

significant categories. Main module is responsible for any data processing, handling 

requests, internal representation of different objects and models and all other internal 

logic. Web interface module actually includes all the communication interfaces used 

by the service. This includes Web API for input requests placing & processing, Web 

API for Backoffice, Feign for placing requests to RNG module, Feign for sending 

notifications to requester, and also includes JPA module for interacting with models 

from the AWS RDS (Amazon Web Services Relational Database Service).  

 



 

43 

 

Figure 3.5 – Architectural diagram of the DSS module with submodules grouped into 

three most significant categories 

 

It also contains Web API for interaction and convenient view of internal 

database models and representations. A Web API documentation module has been 

developed for the interface section, via use of the powerful library called springdoc-

openapi. The example of the resulting Web API design is shown on Figure 3.6. 

 

 

Figure 3.6 – Springdoc-openapi-powered Web API design for DSS module 

 

This implementation of Web API design is interactive, meaning one can expand 

every listed method, check available description, parameters and the expected structure 



 

44 

of body, as well as expected structure of response The example of usage of interactive 

API is depicted on Figure 3.7. 

 

 

Figure 3.7 – Example of springdoc-openapi interactive method usage 

 

As an additional feature, this implementation provides a cURL analogue for 

each request it performs, which allows for these requests to be put into automation 

scripts or easily run from inside the environments with only CLI present, with no fear 

request somehow differs from the one which worked via springdoc-openapi. Example 

of cURL-transformed API request is shown on Figure 3.8. 

 

 

Figure 3.8 – Example of the request automatic transformation into cURL request by 

springdoc-openapi 

 



 

45 

For the database connections, Spring Data JPA has been used, much 

simplifying the development of database queries themselves, allowing to focus more 

on logic of the service. However, complex queries were implemented manually. 

As the next step, a core module has been implemented. It consists of three main 

parts: part responsible for volatility impact; part responsible for input parameters and 

configuration impact; internal service part, responsible for data preprocessing, models, 

representations, data marshalling & unmarshalling, and logic for web requests 

processing. A diagram showing the classes for volatility impact and impact of input 

parameters along with configuration is shown on the Figure 3.9. A showcase of the 

Web module for managing games’ instances and creating new ones is presented on 

Figure B.5. 

 

 

Figure 3.9 – Class and relations diagram for logic responsible for volatility impact 

and input parameters and configuration impact 

 

 

3.3.2 PRNG module implementation 

 

With interfaces implemented, the system will have the flow, depicted on the 

Figure 3.10. 



 

46 

 

 

Figure 3.10 – Workflow diagram of RNG module 

 

So, the principle of work is simple: if a healthcheck request is received, it 

bypasses security filter and is directly put to the web interface. It returns the state of 

the service and is generally required to make use of autoscaling and AWS deployment, 

where deployment system will gather information about the state of the service’s 

instance from this endpoint. If a random number request is received, it first put against 

check of authorization header validity. If the auth header either is missing or doesn’t 

match the required one after decoding, the service returns “401 Unauthorized” 

response. In case the request is successfully authorized, it is passed to the web interface, 

which marshals it and delegates further to RNG core interface. Here the request is 

checked against optional boundaries, since request supports a possibility to specify 

boundaries for generated values. Next step, RNG interface generates a random number 

inside specified boundaries and returns it to the web layer, from where the response 

“200 Success” with body containing the resulting random value is returned to the 

requester. 



 

47 

The class diagram for the RNG module is placed is depicted on Figure B.4.The 

diagram shows all the functional classes, including ones used for data samples 

generation. Functionality interfaces for each class are depicted where applicable. 

 

 

3.3.3 PRNG module certification 

 

After the service has been done, a certification process took place, including an 

audit and full RNG testing by a certified authority. The body conducting the audit is 

known as eCOGRA Limited [31]. 

Audit finished successfully, resulting in the RNG certificate being received. An 

extract from the certificate proving correlation tests have successfully passed threshold 

is added on Figure 3.11. 

 

 

Figure 3.11 – Results of diehard test on provided samples passed the threshold 

 

 

  



 

48 

3.3.4 DSS module integration with PRNG 

 

For the system to work properly and in a full scale, it is necessary to integrate 

service with the RNG module, in order to receive true random number for calculation 

of decision outcome. 

For better scalability, a RNG interaction class has been abstracted to the 

interface, with its implementation providing required functionality. Since the flexible 

design, RNG interaction implementation class can be easily substituted if required. 

Interface is shown on the Figure 3.12. 

 

 

Figure 3.12 – RNG interaction interface 

 

This implementation utilizes feign connection, implemented with the use of 

openfeign library. It implements a method to send a request to RNG module. 

Implementation of feign class is shown on Figure 3.13. It also worth to mention, that 

the URL that specifies RNG module location is externalized in order to keep service’s 

flexibility. 

 

 

Figure 3.13 – Implementation of the feign class to send requests to RNG module 

 

An implementation of RngResolver interface is provided on Figure 3.14. 



 

49 

 

Figure 3.14 – Implementation of RNG interaction interface 

 

 

3.3.5 Statistic collection module implementation 

 

Statistic module is required to emulate a massed requests from real users, and 

collect a data received after processing these requests. It is a vital component, because 

without this module it cannot be told for certain if the service produces values of 

satisfactory entropy and convergence. This module is subdivided into two main 

interfaces: StatisticDefiner and StatisticCollector. 

StatisticProcessor here used as a substitution of requester, receiving all the 

processed data and putting it into the analyzable format. In the current implementation 

of collector, it has been decided to use collection to the .csv file format. This format is 

quite easily produced and marshalled, and can be easily processed by Kibana, using 

the correct plugin for Logstash. In case of CSV files, Logstash requires not too many 

configuration and provides enough flexibility to optimize data before putting to 



 

50 

Kibana, to make it actually possible to produce visualization even for huge amounts of 

data (hundreds of millions of rows, a couple gigabytes each index). An all-round 

statistic processor implementation is shown on Figure 3.15. 

 

 

Figure 3.15 – Implementation of StatisticProcessor which writes the data to the CSV 

 

StatisticCollector is responsible for creating the required DSS components, 

configuration and setup, with the following emulation of user requests and processing 



 

51 

them. There is a plethora of implementations of StatisticCollector, in order to collect 

and analyze different aspects of decision-making process. A class diagram of different 

StatisticCollector implementations is presented on Figure 3.16. 

 

 

Figure 3.16 – Class diagram of different implementations of StatisticCollector 

 

 

3.3.6 Containerization support implementation 

 

After the main functionality for the system has been developed, it has been 

decided to provide a fully functional way for containerization, making service 

deployment much more easy and quick. 

To achieve this goal, all the required externalized configuration parameters 

have been delegated to the Dockerfile, to make service fully customizable. As a base 

image, openjdk-11 has been chosen. The final Dockerfile contains the following 

instructions, as shown on the Figure 3.17. 

To make service better applicable for local testing and to automate Docker 

container creation, which otherwise requires configuration of container’s volumes, 



 

52 

variables and port forwarding directives, a docker-compose.yml has been composed. 

The full docker-compose.yml contents are depicted on Figure 3.18. 

 

 

Figure 3.17 – Contents of Dockerfile 

 

 

Figure 3.18 – Contents of docker-compose.yml file 

 

It can be observed, that this docker-compose file specifies all the variables 

required to properly function. It also forwards port 8080 from inside container to 8080 

of the machine’s one, to make Web API accessible. Another port it forwards is 5432, 

which is a port to maintain database connection 



 

53 

3.4 Conclusions to Section 3 

 

In this section, a detailed description and explanation of the decision support 

system designed for use in financial and gambling industries development process has 

been provided. The description includes a complete definition of the problem and 

domain-specific requirements. 

Next, it describes the flow of derivation of the mathematical component for the 

problem. Existing similar approaches are also reviewed, with detailed description 

which their characteristics render them not viable for this specific case. 

Following mathematical derivation, a process of implementation the 

mathematical algorithm and formula set into the programming language in the form of 

fully standalone stateless system has been depicted. Diagrams and architecture graphs 

are provided where applicable. 

A process of RNG module design and development has been depicted, and 

approaches to its design and development have been explained and substantiated. A 

workflow diagram depicting the principle of the service flow has been provided along 

the explanation to it. Also, a class diagram has been provided and explained. 

As a result, a fully functional RNG module has been developed and certified 

by a licensed authority, resulting in gaining the certificate that RNG is compliant with 

all the restrictions applicable to this kind of services used in gambling and financial 

industries and, in the same time, satisfies all the domain-specific business 

requirements, rendering the service a viable option to be applied in such systems. 

An extract from the certification document is added depicting that the module 

has successfully passed statistical diehard test. 

After the RNG integration, a process of statistic module development is shown. 

This implementation provides a flexible and convenient way for extension and 

substitution of the existing functionality. The data processed by it is designated to be 

stored in the CSV format, with Logstash configuration to process this data and put in 

Kibana in a form that will allow plotting huge amounts of data, such as several 



 

54 

gigabytes at the time, has been also described. As it already mentioned, ELK stack 

(ElasticSearch-Kibana-Logstash) has been used for data processing and analysis. 

The final step was a description of development of containerization support. 

The service has out-of-the-box support to be deployed as a Docker container via 

Docker or Docker-Compose, with docker-compose.yml also present for convenience. 

Thanks to this, the service is able to be deployed on AWS ECS or AWS Fargate. 

This contributes for a description of the final product, which finally represents 

a complete decision support system for gambling industries. Said system provides a 

functionality required at the domain, and is certified to prove that the services are 

provided at satisfactory level, and don’t violate legal regulations. System is designed 

to withstand high load and is tested to be run under 10’000 simultaneous requests. It 

also provides a great flexibility for extension in case of some very specific client’s  

needs, and provides a comprehensible and convenient REST API, which, in turn, 

contributes for easy integration. 

Ability for containerized support greatly increases a compatibility of cloud-

based deployment and makes the deployment simple and quick. Also, containerization 

allows detailed and up-to-date resource monitoring, with great ability for both vertical 

and horizontal scaling. 

  



 

55 

4 BOTTLENECKS OPTIMIZATION AND ARCHITECTURE 

AMENDMENTS 

 

Some of the potential problems of the system have already been described in 

Section 1. Here, let’s take a look at some of them and consider what possible actions 

to improve the system. 

 

 

4.1 Subnet traffic optimization problem 

 

Regarding AWS subnet traffic speed, there’s no real way to influence it 

directly. It depends solely on the physical location of the services inside the data center, 

quality of hardware (which is of high grade in AWS services) and a current load of the 

data center. Taking into account deployment inside a single subnet approach, it’s 

already can be considered second best possible connectivity, the first one being 

deploying on own physical servers directly connected to the target facility via Ethernet 

or optical fiber.  

Thus, only ways to increase interservice communication is either eliminate this 

data exchange at all (by unifying a number of services into a bigger one), or change 

protocols on either network or transport layers of OSI model [32], or limit information 

being sent to essential only, or remove a direct dependency between response await 

time and service idling. 

Protocol change can be considered in the form of moving from HTTP over TCP 

to WebSocket over UDP or plain UDP. Transitioning to WSS is not a viable option as 

the current data structure requires information transmission through request headers. 

Moreover, maintaining the connection session could be detrimental to service 

operation, as it eliminates the possibility of independently scaling components and 

introduces issues with load distribution – the load balancer loses control over the direct 

number of requests to each of the services. Plain UDP is also unsuitable for the task's 

requirements since it significantly diminishes the ability to inform the sender about the 



 

56 

processing result of a request and leads to the loss of guaranteed message delivery, 

contradicting market regulator rules. It is also clearly stated in PRNG restrictions that 

it should not rely on any protocols which may not guarantee information on delivery 

status, limiting choices to TCP-based protocols. 

The option of reducing the volume of transmitted information is not available, 

as the current communication is already minimized to only essential data. Potentially, 

data compression could be applied before transmission, but this might be effective only 

in the communication scenario between jackpot-backend, as the entropy of data in the 

communication with jackpot-randomizer is very high, and compression may not yield 

significant gains. Additionally, the compression process itself is resource-intensive for 

the processor: in a system with thousands of requests per second, increasing the 

processor load for compression may be impractical. 

It is also impossible to eliminate jackpot to backend communication since these 

two systems are purposefully built for principally different tasks, have totally different 

responsibilities and database access levels. To note, they are also both resource-

demanding. Also, since they are implemented using different technological stack, the 

process of their unification would take a considerable amount of time and effort, along 

with reducing maximal individually available resources for each of these components. 

This resource contention will inevitably impact performance and efficiency, since 

vertical scaling always has a hardware limit and current top-notch hardware could not 

content the services in their peak load viably. Such resources would impact pricing 

severely, to the extent of the service not being monetarily attractive anymore, thus 

leading to competition disadvantages. Also, a unification of jackpot and randomizer 

will also raise its own problems, including the fact that jackpot service is a subject of 

licensing and auditing, meaning changing its environment would lead to a new 

licensing process each time, rendering development process of both very cumbersome 

and also greatly increasing a cost with every new update deployed. It can also sabotage 

an ability to deploy critical system fixes or amendments, as deployment of unlicensed 

module is considered illegal, while the licensing itself can take weeks upon weeks. 



 

57 

Eliminating data exchange between jackpot-backend and jackpot-randomizer 

is not possible. These two systems are implemented in different programming 

languages, have fundamentally different responsibilities and databases, and are 

resource-intensive individually. Combining them would lead to increased competition 

for resources and result in a loss of productivity. Vertical scaling is limited, and at the 

current stage of technological development, it may not provide sufficient capabilities 

at a cost that would keep the system competitive. Merging the jackpot and randomizer 

services is also problematic, as randomizer is subject to licensing and auditing. Any 

changes to the code or hardware of this service would require re-licensing, a costly and 

time-consuming procedure that would hinder active development of functionality on 

the jackpot service. 

However, there is a way to improve inter-service communication in both cases 

by decoupling the direct dependency between network transmission speed and 

response delay. This can be achieved by adding queues to the jackpot service to store 

intermediate requests. Thus, the jackpot service won't need to wait for a response from 

the randomizer, as the service will have internally stored a certain amount of data sets 

necessary for performing intermediate computations. This will help mitigate the 

increase in response delay during peak periods. It's worth noting that such a mechanism 

is already implemented for communication between jackpot and backend modules. 

 

 

4.2 Database interaction optimization problem 

 

Improving interaction with databases can be achieved through several 

approaches. Some of the most effective methods include: 

1) specific queries: writing specific queries that take into account the 

system's specifics and execute as quickly as possible; 

2) database structure: creating the right database structure and indexing 

necessary fields to optimize data retrieval; 



 

58 

3) connection pool arbitration: ensuring proper arbitration of the connection 

pool sessions with the database, preventing exhaustion of the connection pool. 

After the system analysis, it can be concluded that the method of writing 

specific queries for performance optimization has been implemented during the 

creation of the system's core functionality. This approach, combined with proper 

database structuring and connection management, contributes to the efficiency and 

speed of database interactions. 

Regarding database structure, it contains only the most essential data, which is 

structured in a way to be easily retrieved with minimal computational load. Everything 

easily derivable from the core data is calculated in situ on modules, to avoid extra 

database session usage. Database structure also sacrifices some storage space in sake 

of more indexing for faster queries. Every field used in comparison or search is indexed. 

Indexed are kept to HASH and BRIN where applicable, but every nonbinary 

comparison with naturally chaotic data required BTREE indexes. Application of 

decomposition and simplification to database models also helped keep it concise and 

efficient. However, for such a complex system, it is hard to define or argue on an 

optimality criteria, for real-world problems often implying some sort of compromise. 

The full entity relation diagram of the system placed under Appendix B on Figure B.6. 

Connection pools can be scaled vertically, but this also has its limitations. 

However, to prevent pool depletion, a mechanism can be implemented to regulate a 

number of concurrent connections from service to the database and to manage database 

transactions. Communication with the database is implemented with aid of Spring JPA, 

which is a quality standard for the industry, and it already provides automatical 

connection pool management on the most part. A couple of significant configuration 

options include connection limit per physical instance, a mechanism of transaction 

handling and a blocking level for concurrent access with at least one thread trying to 

modify some records. 

 

 

 



 

59 

4.3 Load balancing optimization problem 

 

Current loadbalancer implementation utilizes AWS variation, with distribution 

algorithm being round robin. Its principle can be basically reduced to cyclic 

distribution among all addresses for the alias in the DNS table. It provided an ability to 

filtering via CPU and/or RAM utilization metrics. It also provides orchestrator 

functionality by default and allows for autoscaling based on these parameters. 

Still, it has no option to orchestrate/balance the load on custom metrics, neither 

does it have an option to extend it to include them.  

In the essence, each jackpot creates some CPU load by its operation, as well as 

requests it handles also do create load. This means, each jackpot has some operational 

overhead on the machine it’s being deployed onto. Thus, in the example case of 2 

physical servers and 2 jackpots, it’s far more beneficial to have each jackpot on its 

distinct server, rather than having both ones on both servers, avoiding double the 

overhead. This shows that with the specified problem, each new server will add lower 

performance boost to the system, also rendering vertical scaling (increasing single 

instance in terms of computational power). Instead, it is proposed to add a request 

distribution mechanism in such a way that, if possible, distribute the responsibility of 

servers for specific jackpots. In the example mentioned above, events for jackpot 1 will 

exclusively go to server 1, and events for jackpot 2 will go to server 2 accordingly. In 

case a specific server reaches its limit, scaling will occur for a specific set of jackpots. 

Since existing out-of-the-box solutions don’t provide required mechanisms to 

implement this idea, it creates a requirement to implement a custom loadbalancer. 

Estimated principal workflow is depicted on Figure 4.1. 



 

60 

 

 

Figure 4.1 – Principal sequence diagram of expected orchestrator workflow   



 

61 

4.4 Calculations optimization consideration 

 

Jackpot service handles a considerable number of computational operations and 

also handles a lot of lottery application requests. It renders a consideration for 

simplification or avoidance of some of these calculations a viable option to decrease 

load. A significant portion of the calculations are mandatory for each user’s request, 

and are mathematically complex, as can be deduced from Section 3’s derived formulae. 

They have been optimized for computer application during development, but 

calculation saturation reduction should be considered anyways, as it has a lot of 

potential. 

 

 

4.4.1 Probability function intermediary calculations optimization 

 

Probability function formula for each specific win uses a number of 

intermediary calculations. Codebase analysis has provided the evidence that some of 

them can be moved into a ‘temporary constants’ subclass, i.e., being constant 

precalculated values for a row of conditions, unless such conditions change (on 

winning or on configuration update for example). 

For this purpose, it is suggested to create an additional container class for such 

constants. The lifespan of the constants is one jackpot iteration (until the next win) or 

until the first change in the settings of the specified jackpot. To synchronize this data 

across all physical instances of the service, these data should be stored in the database. 

It is also necessary to introduce a mechanism that will initiate the update of this data 

on all physical instances in case of updating these constants in the database by one of 

the services. Ensuring sequential access is not necessary since any of the proposed 

candidate models, although different from others (calculations dependent on random 

numbers), will be equally probable. 

  



 

62 

4.4.2 Dependency inversion of calculations and participant requests 

 

Current system implementation implies that on each lottery application request 

eligible for participation with one user having an option to participate multiple times, 

a system conducts a row of calculations for determining the probabilistic outcome if 

this specific request is a winning one. It actually means that amount of participation 

applications generally equals to amount of calculation iterations. 

However, for some jackpot types, periodical and time-driven in particular, it is 

irrelevant as win probability is much more tightly tied to the period (hour, day, week 

etc.), so that calculation dependency can be effectively inverted. That means for each 

period there will be a preliminary calculation to define a rough approximation of a 

winning time, and once a jackpot reaches such a threshold, only then will it start making 

more of heavy calculations, leading to skipping a significant chunk of uptime. In case 

of appropriate implementation, it can potentially lower the load in tens to hundreds 

times, dependent on period type. 

Implementation of such an approach implies significant complications 

however, since current architecture design has its own limitations, and concurrency 

also contributing to the development complexity, effectively mandating 

implementation of a thread-safe mechanisms. 

 

 

4.5 Conclusions to Section 4 

 

This section depicts a process of analysis of bottlenecks and methodologies 

applied to it. It also shows a detailed review of possible solutions for each found 

problem and shows evaluation of viability of application for each one. It is comprised 

of such problems as subnet traffic speed optimization, database interactions 

optimization, load balancing optimization and calculations’ optimization. 

For a subnet traffic, it has been proven that not much can be dealt in terms of 

increasing speed. The main reasons are AWS subnet providing virtually the best speeds 



 

63 

possible, communication being cut to essential only already, and limitations in protocol 

choices applied by PRNG certification requirements. 

Considering database interactions optimization, it has been described that most 

part of connection pool management is already present, as well as transactions kept 

concise and as fast as possible and required fields are indexed. Regarding database 

access frequency, there is already caching present where applicable, and increasing 

cache time would compromise data precision to the unacceptable levels, thus, current 

frequency can be considered minimal. 

Regarding load balancing optimization, it has been shown that stock options 

provided do not take into account specific metrics of the system built, and to make the 

most use of resource, it is required to build a custom load balancer with orchestration 

functionality. Such service should balance loading not only according to CPU and 

RAM metrics, but also comply with amounts of requests received, as well as try to 

segregate different logical game instances on different physical instances to gain the 

most out of horizontal scaling. A sequence diagram of such a system in place has been 

provided. 

From calculations’ perspective, it has been defined that some calculations are 

effectively constant unless some environment and/or configuration change related to 

the games’ entities they relate to. A system to keep a map of locally stored constants 

which would only change when required, and this way will remove around 20% of 

calculations from each lottery application to only being performed on environment 

change. Also, for periodic game types, these dependency for calculations has been 

inverted, so that for the most part there will be no load unless a time is close to 

estimated win period, thus saving as much as 90% of calculation load for games with 

periods bigger than or equal to one week. Aforementioned changes have been reviewed 

by legal entities and have been considered acceptable for not modifying average values 

and randomness of wins happening. 

  



 

64 

5. THE ECONOMIC SECTION 

 

5.1 Technological audit of the developed the retail gamification system 

 

As mentioned earlier, currently, a majority of human activities witness the 

dominance of computers in decision-making aspects. These areas can be categorized 

as follows: a) either they are simple enough to isolate for decision-making that can be 

executed within a specific number of operations (well-suited for algorithmization), or 

b) they are sufficiently routine and laborious, thus making automation of such 

processes’ perspective in terms of time and financial savings. 

Nowadays, most implementations of decision-making systems and modules 

heavily rely on context and historical data, thereby surpassing human productivity due 

to higher computational speed and the ability to retain a large dataset in unaltered form 

within operational memory. However, sometimes due to various constraints associated 

with legislation, there is a need to comply with established requirements. The decision-

making system must function independently of context while maintaining the same 

decision-making module as systems with state retention. 

Therefore, the analysis focuses on relevance of application of decision support 

system to a retail industry and its potential to optimize sales. To establish the level of 

commercial potential for the software developed, the three prominent experts were 

invited: Doctor of Technical Sciences, Professor Kvetny R.N., Candidate of Technical 

Sciences, Associate Professor Harmash V.V., and Candidate of Technical Sciences, 

Associate Professor Kulyk Y.A. 

The assessment of the commercial potential of the application was conducted 

based on the criteria summarized in Table 5.1, with each expert evaluating certain 

points of system’s viability and potential for profitability. 

 

 

  



 

65 

Table 5.1 – Assessment criteria for evaluating the commercial potential of any 

development and their score rating (on a scale of 0 - 1 - 2 - 3 - 4 points) 

Evaluation Criteria and Scores (on a 5-point scale) 

C

Сriteri

on 

0 1 2 3 4 

Technical Feasibility of the Concept: 

1

1 

The 

credibility of 

the concept is 

not 

confirmed. 

 

Concept 

validated by 

expert 

opinions 

Concept 

validated by 

calculations 

Concept tested 

in practice 

Product's 

operational 

capability 

verified in real-

world conditions 

Market Advantages (Disadvantages): 

2

2 

Numerous 

analogs in a 

small market 

Few analogs in 

a small market 

Several analogs 

in a large market 

One analog in 

a large market 

No analogs for 

the product in a 

large market 

3

3 

The price of 

the product is 

significantly 

higher than 

that of 

analogs 

The price of 

the product is 

slightly 

higher than 

that of 

analogs 

The price of the 

product is 

approximately 

equal to the 

prices of analogs 

The price of 

the product is 

slightly lower 

than that of 

analogs 

The price of the 

product is 

significantly 

lower than that 

of analogs 

4

4 

Technical and 

consumer 

properties of 

the product are 

significantly 

worse than 

those of 

analogs 

The technical 

and consumer 

properties of 

the product are 

slightly worse 

than those of 

analogs 

The technical and 

consumer 

properties of the 

product are on par 

with those of 

analogs 

The technical 

and consumer 

properties of the 

product are 

slightly better 

than those of 

analogs 

The technical and 

consumer 

properties of the 

product are 

significantly 

better than those 

of analogs 

  



 

66 

Continuation of Table 5.1 

Evaluation Criteria and Scores (on a 5-point scale) 

C

Criteri

on 

0 1 2 3 4 

Market Prospects 

5

5 

Operational 

costs are 

significantly 

higher than 

those of 

analogs 

Operational 

costs are 

slightly higher 

than those of 

analogs 

Operational costs 

are on par with 

the operational 

costs of analogs 

Operational 

costs are slightly 

lower than those 

of analogs 

Operational costs 

are significantly 

lower than those 

of analogs 

6

6 

The market is 

small and lacks 

positive 

dynamics 

The market is 

small but 

shows positive 

dynamics 

Medium-sized 

market with 

positive dynamics 

Large and stable 

market 

Large market 

with positive 

dynamics 

7

7 

Active 

competition 

from major 

companies in 

the market 

Active 

competition 

Moderate 

competition 

Slight 

competition 

No competitors 

Practical Feasibility 

8

8 

Lack of 

experts in both 

technical and 

commercial 

implementatio

n of the idea 

Requires 

hiring experts 

or significant 

investment of 

time and 

money in 

training 

existing 

personnel 

Minor training 

required for staff 

and slight 

expansion of the 

team 

Minor training 

required for staff 

Experts available 

both technically 

and commercially 

 

 

 



 

67 

Continuation of Table 5.1 

Evaluation Criteria and Scores (on a 5-point scale) 

C

Criteri

on 

0 1 2 3 4 

9

9 

Significant 

financial 

resources 

needed. Lack 

of funding 

sources for 

the idea 

Slight 

financial 

resources 

needed, but 

no funding 

sources 

available 

Substantial 

financial 

resources 

needed, funding 

sources exist 

Slight financial 

resources 

needed, funding 

sources exist 

No need for 

additional funding 

1

10 

Requires 

development 

of new 

materials 

Materials 

required are 

used in 

military-

industrial 

complex 

 

Expensive 

materials needed 

 

Accessible and 

inexpensive 

materials needed 

 

All materials for 

idea 

implementation 

are well-known 

and have long 

been used in 

production 

1

11 

Implementatio

n timeline 

exceeds 10 

years 

 

Implementatio

n timeline 

exceeds 5 

years. Return 

on investment 

period exceeds 

10 years 

Implementation 

timeline from 3 to 

5 years. Return on 

investment period 

exceeds 5 years 

Implementation 

timeline is less 

than 3 years. 

Return on 

investment 

period from 3 to 

5 years 

Implementation 

timeline is less 

than 3 years. 

Return on 

investment period 

is less than 3 

years 

1

12 

Necessary 

development of 

regulatory 

documents and 

acquiring 

numerous 

permits for 

production 

Requires 

acquiring 

permits for 

production and 

implementatio

n, significant 

costs and time 

The process of 

obtaining permits 

for production and 

product 

implementation 

requires minor 

costs and time 

Only 

notification to 

relevant 

authorities about 

production and 

product 

implementation 

is necessary 

No regulatory 

constraints on 

production and 

product 

implementation 



 

68 

Invited experts have evaluated developed system as followed in table 5.2:  

 

Table 5.2 – Evaluation Results of the Commercial Potential of the Development 

Criterion Last name, initials of the expert 

Kvetny R.N. Harmash V.V. Kulyk Y.A 

Scores given by the experts:  

1 3 4 3 

2 4 3 3 

3 3 4 3 

4 4 4 3 

5 3 4 3 

6 3 4 4 

7 3 4 3 

8 4 4 3 

9 4 3 4 

10 4 4 3 

11 4 3 3 

12 4 4 4 

Sum of grades СБ1 = 43 45 39 

 

The arithmetic mean (СБ ), of the scores assigned by the experts was: 

3

і

1

Б
43 45 39 127

СБ 42,33
3 3 3

+ +
= = = =


. 

The overall level of commercial potential for any development was determined 

based on the criteria outlined in Table 5.3 [33]. 

Guided by the recommendations in Table 5.3, it can be concluded that the 

developed system was evaluated by experts at 42,33 points, indicating that named 

development possesses a commercial potential categorized as "high". 

 

 

 



 

69 

Table 5.3 – Levels of Technical and Commercial Potential of the Development 

The arithmetic mean of scores calculated 

based on the experts' conclusions. 

The level of technical and commercial 

potential of the development.  

0  – 10 Low 

11 – 20 Below average 

21 – 30  Average 

31 – 40 Above average 

41 – 48 High 

 

This is explained by the fact that the development has prospects and advantages 

of modern scientific solutions (simplicity, functionality, flexibility, efficiency), while 

eliminating several drawbacks (complexity in interface and functionality, use of 

complex algorithms, the necessity of support and certification, etc.). Additionally, for 

further improvement of the development, it can be expanded by supplementing the 

software with new modules. 

 

 

5.2 Calculation of the expenses incurred in the development of the retail 

gamification system 

 

 

During the work, the following expenses were incurred: 

1) Primary salary of executors Зо: 

 

t
Т

М
З

р

о =  UAH,                                                      (5.1) 

 

Where М represents the monthly base salary of a specific executor in UAH;  

In 2023, the salary ranges for researchers fall within (6700…26000) UAH/month; Тр 

–  indicates the number of working days in a month; let’s assume Тр = 20 days.  



 

70 

The calculations of the primary salary of the executors will be summarized in 

Table 5.4: 

 

Table 5.4 – Calculation of the primary salary of executors (developers) 

 

Position title of the 

executor 

Monthly 

base 

salary, 

UAH 

Payment 

per 

working 

day (or per 

hour), 

UAH 

Number 

of 

working 

days 

Remunerati

on costs, 

UAH  

Notes 

1. Scientific supervisor 

of the Master's 

qualification work 

20000 1000 20 hrs 3333,33 ≈ 

≈3334 

6 hrs per 

day 

2. Student developer - 

Master's student 

6700 335 70 days 23450  

3. Consultant in the 

economic section 

19000 950 1,5 hrs 237,5 ≈ 238 6 hrs per 

day 

4. Other consultants 16000 800 3 days 2400  

Total 29422 

 

2) Additional remuneration of the executors Зд is calculated as (10…12 of the 

primary salary of the executors, which means: 

 

                    од З)12,0...1,0(З = .                                                 (5.2) 

 

For this case: 

 

                       Зд = 0,101 × 29422 = 2971,62 ≈ 2972 UAH. 

 

3) Accruals to the payroll Нзп are calculated by the formula: 

                                   ,
100

)ЗЗ(Н дозп


+=                                                     (5.3) 

where Зо – primary salary of the executors, UAH; 

      Зд – additional remuneration of the executors, UAH; 

      β – The rate of the unified social security contribution for mandatory state 

social insurance; β = 22%. 



 

71 

Then: 

 

                   Нзп = (29422+2972) × 0,22 = 7126,68  ≈ 7127 UAH.  

 

4) Material expenses М are calculated per each material type: 

 

        −=
n

1

n

1

вiііі ЦВКЦНМ  UAH,                                     (5.4) 

 

where Нi – material expenses per i designation, kg; Цi – cost of a material i, 

UAH /kg.; Кi – transportation expenses coefficient, Кі = (1,1…1,15); Вi – material 

disposal mass per material i, kg; Цв – material waste price per material i, UAH /kg; n 

– total number of used materials. 

5) The expenses on components К are calculated by the formula: 

 

 =
n

1

iii КЦНК  UAH,     (5.5) 

 

where Ні – the quantity of components і-th type, pcs.; Ці – price per component 

of і-th type, UAH; Кi – transportation expenses coefficient, Кі = (1,1…1,15); n – total 

number of components. 

Following the analogy with other developments, the cost of all utilized material 

resources is approximately 900 UAH.  

6) Depreciation (A) of equipment, computers, and premises A can be calculated 

by the formula: 

 

12

Т

100

НЦ
А а 


=  UAH,      (5.6) 

where Ц – the total book value of fixed assets in UAH;  

На – the annual depreciation rate: На = (2...25)%; 



 

72 

Т- is the period of equipment, premises, etc. the usage, in months. 

The calculations made have been summarized in Table 5.5: 

 

Table 5.5 – Calculation of depreciation deductions 

Equipment, 

premises, etc. 

Book 

value, 

UAH. 

Depreciat

ion rate, 

% 

Period of 

usage, months. 

Depreciation 

deductions, UAH 

1. Personal 

computers, printers, 

etc 

62000 25 3,2 (50%) 2066,67 

2. Department and 

faculty premises 

52000 2,5 3,2 (50%) 173,33  

Total A = 2240 

 

7) Expenses for electrical power Be are calculated using the formula: 

 

                            
д

п
e

К

КФПB
B


= ,                                                              

(5.7) 

 

where В – price of 1 kilowatt-hour. Electricity in 2023 ≈ 4,5 UAH/kWh; 

П – The installed capacity of the equipment kWh; П = 1,05 kWh 

Ф – actual number of equipment operating hours, hours.  

Assume, that Ф = 315 hours; 

Кп – power usage coefficient; Кп  < 1 = 0,83.  

Кд – Useful action coefficient Кд = 0,76. 

Then the expenses for electrical power:  

 

п
e

д

B П Ф К 4,5 1,05 315 0,83
B 1625,46 1626

К 0,76

     
= = =   UAH. 



 

73 

 

8) Other expenses Він  can be estimated as (50…300)% from the initial salary 

of the performers: 

 

                             Він = Кін × Зо = (0,5..3,0) × Зо.                                             (5.8) 

 

In this case let’s assume that Кін = 0,75. Then: 

 

Він = 0,75 × 29442 = 22081,5 ≈ 22082 UAH. 

 

9) Total sum of all the previous expenses gives the total expenses of the current 

stage execution by the Student developer - Master's student – В.  

In this case: 

 

В = 29422 + 2972 + 7127 + 900 + 2240 + 1626 + 22082 = 66369 UAH. 

 

10) The calculation of the total costs for the development and final refinement 

of the work that have been done is carried out according to the formula:  

 

                                                         


=
В

ЗВ ,                                               (5.9) 

Where   –coefficient characterizing the stage of completion of this work. 

Since the development still requires slight refinement, it can be assumed that   ≈ 0,87. 

Then: 

 
66369

ЗВ 76286,21
0,87

= =  UAH or approximately 77000 UAH. 

 

So, the projected total expenses for the development of the gamification system 

amount to approximately 77 000 UAH. 

 



 

74 

5.3 Calculation of the economic effect from the potential commercialization of 

the development 

 

The market analysis indicates that the developed the gamification system will 

have significant demand among companies engaged in retail sales, particularly in 

supermarket chains like Silpo, ATB, Metro, Epicenter, online marketplaces such as 

Hotline and Rozetka, online stores, online gaming, gambling establishments, and 

similar domains. 

So, if the development is implemented from January 1, 2024, its results will 

manifest during 2024, 2025, and 2026. The projected increase in demand for the 

development per year is as follows: 

a) 2023 - 1 unit (development); 

b) 2024 - +5 units from the base year(i.e., 5 clients); 

c) 2025 - +10 units from the base year(i.e., 10 clients); 

d) 2026 - +15 units from the base year(i.e., 15 clients). 

According to expert conclusions, the potential market price for the 

development in the current market is approximately $6,000 or around 240,000 UAH, 

while similar developments that partially perform the functions mentioned above cost 

up to 200,000 UAH in the market. The potential increase in net profit іП , from taking 

the product to the market will amount to:  

                     = іП )
100

1()NЦNЦ( іоо

n

1


−+ ,                       (5.10) 

Where  Цо – an improvement in the primary qualitative indicator from 

implementing the outcomes of the development in this year. In the case, this is:  

 

ΔЦо = 240 –200 = + 40 000 UAH; 

 

N – the main quantitative indicator that defines the scope of activities in the 

year before the implementation of the development results; N = 1 pcs.; 



 

75 

 N – improvement of the main quantitative indicator due to the 

implementation of the development results.  

This improvement will be as follows: in 2024 –  N =3 pcs., in 2025  N = 10 

pcs., and in 2026  N = 15 pcs.; 

Цо - the primary qualitative indicator (i.e., the price) determining the scope of 

activity in the year following the implementation of the development results UAH; Цо= 

240 000 UAH; 

n – total number of years, during which the positive results from development 

implementation is expected; in this scenario n = 3; 

  – The coefficient that takes into account the value-added tax (VAT) 

payment; 8333,0= ;  

  – The coefficient that considers the product's profitability. It is recommended 

to assume = (0,2...0,5); set = 0,5; 

  – the corporate tax rate. In 2023-26 years   = 18% (assumption).  

The potential increase in net profit  П1 for a potential investor during the first 

year after the possible implementation of the development (2024), it would be: 

 

1

18
П [40 1 240 5] 0,8333 0,5 (1 ) 424

100
 =  +     −   thousand UAH. 

 

For the potential investor during the second year after the possible 

implementation of the development (2025), it would be calculated similarly: 

 

2

18
П [40 1 240 10] 0,8333 0,5 (1 ) 834

100
 =  +     −   thousand UAH. 

 

The potential increase in net profit  П3 for a potential investor during the first 

year after the possible implementation of the development during the third year (2026) 

is totaled: 

 



 

76 

3

18
П [40 1 240 15] 0,8333 0,5 (1 ) 1244

100
 =  +     −   thousand UAH. 

 

The total value of the increased net profits from the potential implementation 

and commercialization of the development: 

 

             
+


=

т

1
t

і

)1(

П
ПП ,                                                 (5.11) 

 

where іП  – the increase in net profit in each of the years when the results of 

the completed and implemented work are manifested is as follows; 

т – the time period during which the results of the implemented work are 

manifested is for 3 years, represented by t=3 years.; 

  – the discount rate. Let’s assume   = 0,10 (10%); 

t – the period of time from the initiation of the development of the retail 

gamification system when potential net profits are obtained by the potential investor.  

Then, the present value of the growth of all potential net profits (PP) that a 

potential investor can gain from the commercialization of the development would be: 

 

2 3 4

424 834 1244
ПП

(1 0,1) (1 0,1) (1 0,1)
= + +

+ + +
≈ 350 +627 +850  = 1827 thsnd. UAH. 

 

The present value of investments (PV) that should be allocated towards the 

implementation of the development would be: PV = (1,0…5,0) × Взаг.  

In this case, PV = (1,0…5,0) × 73 = 5,0 × 77 = 385 thousand UAH. 

The absolute effect of potential investments made in the implementation of the 

development would be Еабс.  

 

                                            Еабс = ПП – PV,                                              (5.12) 

 



 

77 

where ПП – the present value of the increase in all net profits for the potential 

investor from the potential commercialization of the development, UAH; 

PV – The present value of investments (PV) amounts to PV = 385 thousand 

UAH.  

The absolute effect from the potential implementation of the development will 

be: 

Еабс = 1827 – 385 = 1442 000 UAH.  

 

Next, let’s calculate the internal rate of return (Ев) of the invested capital: 

 

       1
PV

Е
1Е жТ абс

в −+= ,                                                  (5.13)          

where Еабс – the absolute effect of the invested capital; Еабс = 1442 000 UAH; 

PV – the present value of the initial investments PV = 385 000 UAH;  

Тж – development lifecycle, years.  

Тж = 4 years (2023, 2024, 2025, 2026 years) 

 

In this case it would be: 

 

4 44
в

1442
Е 1 1 1 3,7455 1 4,7455 1 1,476 1 0,476 47,6%.

385
= + − = + − = − = − = =   

 

Next step is to figure out the minimum profitability. If it is less than that, a 

potential investor wouldn't want to commercialize the development. 

The following formula is used to determine the minimum profitability, or 

barrier discount rate  мін: 

 

                           =мін  d + f,                                                           (5.14) 

where d – the weighted average rate on deposit operations in commercial banks; 

in 2022-2023 in Ukraine d = (0,10...0,12); 



 

78 

 

Assume d = 12%; 

f – indicator characterizing the riskiness of investments 

f  = (0,1...0,50). Assume f = 0,30. 

In this case:  

 

 мін = 0,12 + 0,30 = 0,42  або  мін = 42%. 

 

Given the magnitude Ев = 47,6%  >  мін = 42%, then a potential investor may 

indeed be interested in financing and commercializing the development. 

. Next step is to calculate the payback period for the funds invested in the 

potential commercialization of the system. 

The payback period Ток is calculated by formula: 

 
в

ок
Е

1
Т = .                                                            (5.15) 

In this case the payback period Ток: 

ок

1
Т 2,10

0,476
= =  years < 3 years,  

 

this indicates the potential viability of commercializing the developed system 

of the retail gamification system. 

Further, a simulation was conducted to model the relationship between the 

internal rate of return of potential investments and the inflation rate in the country.  

If the inflation rate in the country increases to 20%, then: 

 

2 3 4

424 834 1244
ПП

(1 0,2) (1 0,2) (1 0,2)
= + +

+ + +
≈ 294 +483 +600  = 1377 000 UAH. 

 

The absolute effect from the potential implementation of the development will 

amount to: 



 

79 

Еабс = 1377 – 385 = 992 000 UAH.  

 

Next, the calculation of internal rate of return (IRR) of the invested investments 

Ев is provided: 

 

       1
PV

Е
1Е жТ абс

в −+= ,                                                            

where Еабс –absolute effect of the invested investments; Еабс = 992 000 UAH; 

PV – the present value of the initial investments PV = 385 000 UAH;  

Тж – development lifecycle, years. 

 

4 44
в

992
Е 1 1 1 2,5766 1 3,5766 1 1,375 1 0,375 37,5%.

385
= + − = + − = − = − = =   

 

Given magnitude Ев = 37,5%  <  мін = 42%, then the potential investor might 

have doubts in financing and commercializing the development in principle. 

If the country's inflation rate rises to 30%, then:  

 

2 3 4

424 834 1244
ПП

(1 0,3) (1 0,3) (1 0,3)
= + +

+ + +
≈ 251 +380 +436  = 1067 000 UAH. 

 

The absolute effect from the potential implementation of the development will 

be: 

 

Еабс = 1067 – 385 = 682 000 UAH. 

  

Next, let's calculate the internal rate of return of the invested investments Ев: 

 

1
PV

Е
1Е жТ абс

в −+= ,                                                            



 

80 

 

where Еабс – the absolute effect from the potential implementation; Еабс = 682 

000 UAH; 

PV – the present value of the initial investments PV = 385 000 UAH;  

Тж development lifecycle, years.  

In this case: 

 

4 44
в

682
Е 1 1 1 1,7714 1 2,7714 1 1,29 1 0,29 29,0%.

385
= + − = + − = − = − = =   

 

Given magnitude Ев = 29,0%  <  мін = 42%, then a potential investor may not 

be interested in the commercialization of the development. 

The calculations made in the form of graphs are presented in Figure 5.1. 

 

 

Figure 5.1 – Modeling the relationship between the internal rate of return of 

potential investments and the inflation rate in the country (10%, 20%, 30%, and 40%) 

 

The analysis of the charts in Figure 5.1 shows that at an inflation rate of 10%, 

the internal rate of return of investments is Ев = 47,6% >  мін = 42%, therefore, the 

commercialization of the development may be worthwhile. The analysis reveals that at 

an inflation rate of 20% and 30%, the internal rate of return of investments is 

0

5

10

15

20

25

30

35

40

45

50

Внутрішня дохідність вкладених інвестицій, %

10%-інфляція

20%-інфляція

30%-інфляція

Threshold value 42% 

47,6% 37,5% 29,0% 



 

81 

respectively Ев = 37,5% і Ев = 29%  мін = 42%, hence, the commercialization of the 

development can be in question. However, a final decision on this matter requires 

additional calculations (possibly reducing the investment risk level, increasing the 

demand for the development, enhancing the selling price of the development, etc.). 

The outcomes of the performed economic part of the master's qualification 

theses are summarized in the Table 5.6: 

 

Table 5.6 – Summary of financial analysis of master’s qualification theses 

Indicators Defined in 

Technical 

task 

Attained in the Master’s 

thesis 

Conclusion 

1. Development 

expenses 

Less than 

80 000 UAH 

 

77 000 UAH. Achieved 

2. Absolute effect 

from implementing 

the development, 

thousands of UAH 

1400-1500 

 000 UAH 

 

1442 000 UAH 

(with 10%-inflation) 

Completed 

3. Internal Rate of 

Return on 

Investments, % 

More than 

42% 

47,6% 

(with 10%-inflation) 

Achieved 

4. Payback Period of 

Investments, years 

Less than in 3 

yrs. 

2,10 yrs. Completed 

 

Therefore, the key technical and economic indicators of the developed the retail 

gamification system as defined in the technical task, have been achieved.  



 

82 

CONCLUSIONS 

 

In this master’s qualification work, a complete process of stateless DSS 

ecosystem development, with its further certification, analysis and optimization has 

been described, along with methods to apply aforementioned system to solving 

problems of commercial industries’ gamification. An extensive analysis has rendered 

a development of a new DSS system, compliant with all the restrictions and limitations, 

and applicable to real-world problems as a viable and demanded option on the market. 

A full process of development and certification of cryptographically strong random 

numbers generator module has also been shown. All the complications and limitations 

have been described and explained in detail. 

For a decision support module, a mathematical problem has been formalized 

and solved, providing a new method for implementing decision making algorithm 

compliant with requirements and able to operate in stateless environment. This method 

was then implemented into a program module via use of Java programming language, 

Spring Boot framework and accompanying libraries. As a result, a fully functional 

decision support system with random numbers generator module has been 

implemented and integrated into a real-world environment. Said system is designed to 

be stateless, shows good performance, is able to withstand high load, where it was 

tested against 10 000 concurrent requests. The system also provides a statistical module 

for extensive analysis of its statistical parameters. The results of the collected statistic 

can be put into Kibana for visualization of them, for convenient analysis and 

processing. Average amount of requests per second converges to 2 500. 

To achieve the result, a number of steps were completed during the process. An 

extensive analysis of existing analogues has been conducted, showing up there are no 

direct competitors, as most services provide RNG and DSS as a part of their bigger 

services, built over said technologies. This have led to the conclusion that 

implementing a service providing bare RNG & DSS will have a great demand on the 

market. It have been also researched that implementing a number of built-in features, 

including a Web interface, a module for Web interface integration in customer’s 



 

83 

content management system, a number of predesigned game types, along with 

segmentation possibilities, will be to a significant benefit. The exploration has also 

shown that one of the industries with most prospects would be a commerce sector. 

Thus, a gamification of purchasing process have been described as one of the main 

priorities. As a competitive edge, it has also been decided to make a billing on a per-

transaction basis to encourage small and uncertain businesses to try out the solution. It 

has also been defined that making pricing a public information would greatly increase 

a number of potentially interested customers, as majority of competitors do not provide 

this data in any form unless contacted directly, severely limiting information spread. 

Programming paradigms and tools were reviewed; those chosen for the 

development have been extensively described. The system was implemented with Java 

programming language, using Spring Boot framework as a basic one. Random numbers 

generation module has been implemented. All the limitations and regulations applied 

by law and by the business demand, including statelessness, were complied with. As a 

proof of the service is following all the rules and limitations, RNG has been certified 

by a British accredited body conducting audits and certifications. A part of a 

certification report with diehard statistical test compliance has been provided in a 

corresponding section. 

A mathematical solution for following a general convergency yet keeping 

enough individual entropy has been developed and documented in detail. With that 

solution, a DSS system has been implemented. After an integration of RNG and DSS, 

a task of this work can be considered complete. During the process of performing this 

bachelor’s thesis, all the tasks defined in the introduction were fulfilled, resulting in a 

fully compliant and working DSS system. 

The system has been thoroughly analyzed and checked for bottlenecks and 

potential flaws. After a full review of the codebase and architecture diagrams and 

documentation, a number of points with potential to improve have been defined. For 

each of these, an analysis of the root of the problem along with multiple possible ways 

to solve them has been provided. Then, for each of the proposed improvement 

approaches, an evaluation has been given based on possibility to apply, viability to the 



 

84 

current state of the system, current level of introduction of such a method in the system, 

implementation complexity and performance improvement potential. The analysis has 

discovered that a lot of optimization methods proposed for application have already 

been applied to varying levels of extent. Nonetheless, a number of optimizations 

proposals have been defined as viable and implemented, with a reasoning for each 

provided in detail. The result of optimization process is an improvement in 

performance for single instance deployment of 70% on CPU usage. Optimization of 

inter-service communication and better request handling by orchestrator have led to 

average response time reduction to handle peak situations almost twice as fast, 

decreasing to 56% from prior metrics (exact numbers are still client- and environment-

dependent, but testing conditions have shown change from 247 ms to 139 ms on 

average to remote AWS cluster). Architecture changes and orchestrator 

implementation have also provided a benefit of average savings in instance uptime of 

around 20%, taking into account resources utilized by orchestrator instances. The 

results are provided for a system with 2 orchestrator modules of AWS m7g.medium 

and 3 modules of  jackpots with configuration of m5.xlarge, with total of 6 multilevel 

games being present simultaneously on the environment with 1 of jackpot modules 

only being active during peak periods (around 8 hours each day). The previous 

configuration was 6 full-time jackpot instances of same configuration (1 per game). 

The result of the database optimization is a reduction of the most CPU-heavy queries 

average load by waits metric from 0.79 to a 0.05 per active game (average CPU load, 

with database providing maximum possible 4 vCPUs for db.m5.large configuration). 

Data for comparison is taken from AWS RDS Performance insights dashboard. 

The resulting product of this qualification work is a working gamification 

system which has been incorporated in a real business solutions and rendered itself as 

a successful one. The optimization have also provided significant boost in 

performance, leading to better customer satisfaction and saving costs on AWS resource 

billing. 

  



 

85 

LIST OF REFERENCED LITERATURE 

 

1. Hurwitz, Judith. Smart or Lucky: How Technology Leaders Turn Chance 

into Success. John Wiley & Son, 2013. 164p. ISBN 978-1118033784. 

2. ISO/IEC 27001:2013 Information technology — Security techniques — In-

formation security management systems — Requirements. 2019. ISO, 23p. 

3. ISO/IEC 18031:2011 Information technology — Security techniques — 

Random bit generation. ISO, 2020. 142p. 

4. eCOGRA Certification Lab Homepage . eCOGRA ISO 27001 Certification 

Lab: website. URL: https://ecogra.org/ (Date of access: 01.12.2023). 

5. NIST. NIST's March 2006 Policy on Hash Functions. National Institute on 

Standards and Technology Computer Security Resource Center. 2006. URL: 

https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions (Date of ac-

cess: 01.12.2023). 

6. FIPS 140-3 Security Requirements for Cryptographic Modules. National 

Institute of Standards and Technology. 2019, 11p. 

7. Bogach I.V., Maliovanyi D.V. Забезпечення передбачуваності 

ймовірнісний рішень згідно закону великих чисел у системах із відсутністю 

стану. Proceedings of LI VNTU Conference of technical science, may 30-31, 2022. 

URL: https://conferences.vntu.edu.ua/index.php/all-fksa/all-fksa-2022/paper/view/15 

620 (Date of access: 01.12.2023). 

8. Daniel Johnson. What is Expert System in AI. Guru99: website. URL: 

https://www.guru99.com/expert-systems-with-applications.html#1 (Date of access: 

01.12.2023). 

9. Investopedia. Decision Support System (DSS). Investopedia: website. 

URL: https://www.investopedia.com/terms/d/decision-support-system.asp (Date of 

access: 01.12.2023). 

10. Cornelius T. Leondes. Expert systems: the technology of knowledge man-

agement and decision making for the 21st century. 2002. pp. 1–22. ISBN 978-0-12-

443880-4. 



 

86 

11. George Marakas. Decision Support Systems In The 21st Century. Pearson 

College Div., 2002. 611p. ISBN 978-8120323766. 

12. Lawtrust: Worldwide RNG Certification Company. Lawtrust: website. 

URL: https://lawstrust.com/en/licence/gambling/rng-certificate (Date of access: 

01.12.2023). 

13. BlueRibbon Homepage. BlueRibbon LTD: website. URL: 

https://www.bluerbn.com/ (Date of access: 01.12.2023). 

14. SoftSwiss Homepage. SoftSwiss: website. URL: 

https://www.softswiss.com/licensing/ (Date of access: 01.12.2023). 

15. Eckel Bruce. Thinking in Java 4th Edition. Pearson — Education, Inc., 

2006. 1057p. ISBN: 0-13-187248-6. 

16. Richardson L., Amundsen M. RESTful Web APIs. O’Reilly Media, Inc.: 

1005 Gravenstein Highway North, Sebastopol, CA 95472., 2013. 406p. ISBN: 978-1-

449-35806-8. 

17. Oracle. GraalVM Release Notes. Oracle Corporation: website. URL: 

https://www.graalvm.org/release-notes/22_1/ (Date of access: 01.12.2023). 

18. Martin Fowler. Crossing Refactoring's Rubicon. Martin Fowler: website. 

URL: https://martinfowler.com/articles/refactoringRubicon.html (Date of access: 

01.12.2023). 

19. JetBrains. Intellij IDEA Homepage. JetBrains: website. URL: 

https://www.jetbrains.com/idea/ (Date of access: 01.12.2023). 

20. Richard Silverman. Git Pocket Guide: A Working Introduction. O'Reilly 

Media, 2013. 231p. ISBN 978-1449325862. 

21. How Gambling Really Works. Addictions Foundation of Manitoba: web-

site. URL: http://getgamblingfacts.ca/how-gambling-really-works/ (Date of access: 

01.12.2023). 

22. What is House Advantage. Addictions Foundation of Manitoba: website. 

URL: http://getgamblingfacts.ca/how-gambling-really-works/what-is-house-advan-

tage/ (Date of access: 01.12.2023). 



 

87 

23. Robert C. Hannum. A Guide to Casino Mathematics. Gaming Studies Re-

search Center, University of Levada, Las Vegas., 2005. 12p. 

24. Cabot A., Hannum R. Practical Casino Math, 2 nd edition. Reno NV, Insti-

tute for the Study of Gambling & Commercial Gaming, University of Nevada., 2005. 

247p. ISBN 0-942828-53-4. 

25. What is volatility? Investopedia: website. URL: https://www.in-

vestopedia.com/terms/v/volatility.asp (Date of access: 01.12.2023). 

26. Simon DeDeo. Bayesian Reasoning for Intelligent People. Social and De-

cision Sciences, Carnegie Mellon University & the Santa Fe Institute. 2018, 26p. 

27. RenÈ Garciaa , Abraham Liouib, Patrice Poncetc. The Myth of Long Hori-

zon Predictability: An Asset Allocation Perspective. Hau-Commissariat Au Plan., 

2011. 68p. 

28. Abraham Lioui, Patrice Poncet. Long horizon predictability: An asset allo-

cation perspective. European Journal of Operational Research, Elsevier., 2019. 34p., 

pp.961 - 975. hal-03484415. 

29. Yuvraj Gupta. Kibana Essentials. Packt Publishing, 2015, 206p. ISBN 978-

1-784-39493-6. 

30. Geogebra Homepage. Geogebra: website. URL: https://www.geoge-

bra.org/ (Date of access: 01.12.2023). 

31. eCOGRA Homepage. eCOGRA Limited: website. URL: 

https://ecogra.org/ (Date of access: 01.12.2023). 

32. What is the OSI Model?. Cloudflare: website. URL: https://www.cloud-

flare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/ (Date of 

access: 01.12.2023). 

33. Kozlovskyi V.O., Les’ko O.Y., Kavetskyi V.V. Методичні вказівки до 

виконання економічної частини магістерських кваліфікаційних робіт. Vinnytsia, 

VNTU, 2021. 42 p.  



 

88 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

  



 

89 

Appendix A (mandatory) 

Technical task 

 

 

ЗАТВЕРДЖУЮ 

Завідувач кафедри АІІТ 

д.т.н., проф. Олег БІСІКАЛО 

____________________«  12  »       10       2023 р. 

 

       

       

ТЕХНІЧНЕ ЗАВДАННЯ 

на магістерську кваліфікаційну роботу 

«Архітектурна та функціональна оптимізація програмного модуля для 

імовірнісних розрахунків та гейміфікації для фінансових індустрій»  

08-31.МКР.008.02.000 ТЗ 

 

 

Керівник: к.т.н., доц. каф. АІІТ 

_______ Ілона БОГАЧ 

« 12 »   жовтня   2023 р. 

Розробив студент гр. 1ІСТ-22М 

_______ Дмитро МАЛЬОВАНИЙ 

« 12 »   жовтня   2023 р. 

 

 

 

 

 

Вінниця ВНТУ 2023  



 

90 

1. Назва та галузь застосування 

Архітектурна та функціональна оптимізація програмного модуля для 

імовірнісних розрахунків та гейміфікації для фінансових індустрій. 

Інформаційні системи та технології. Галузь застосування: сфера торгівлі, 

сфера послуг, автоматизація процесів. 

 

2. Підстава для розробки 

Підставою для виконання роботи є наказ № 247 по ВНТУ від «18»    09     2023р., 

та індивідуальне завдання на МКР, затверджене протоколом №  1  засідання 

кафедри АІІТ від «30»     08     2023р. 

 

3. Мета та призначення розробки 

Метою роботи є розробка програмного забезпечення для гейміфікації 

індустрії продажів задля оптимізації кількості продажів та управління 

фокусом продажів конкретних категорій чи позицій товарів шляхом 

заохочення споживачів. 

 

4. Джерела розробки 

1) Hurwitz, Judith. Smart or Lucky: How Technology Leaders Turn Chance into Suc-

cess. John Wiley & Son, 2013. 164p. ISBN 978-1118033784. 

2) Cornelius T. Leondes. Expert systems: the technology of knowledge management 

and decision making for the 21st century. 2002. pp. 1–22. ISBN 978-0-12-443880-4. 

3) Richardson L., Amundsen M. RESTful Web APIs. O’Reilly Media, Inc.: 1005 

Gravenstein Highway North, Sebastopol, CA 95472., 2013. 406p. 

 

5. Показники призначення 

 Основні технічні вимоги та мінімальні системні вимоги до програми: 

ОС Ubuntu 20.04, процесор AMD Ryzen 3600, оперативна пам’ять 8 GB, місце 

на диску 100 MB доступного місця. 

 



 

91 

 Методи дослідження: 

В даній роботі використовуються методи аналізу, моделювання, класифікації, 

спостереження, прогнозування, експерименту та прагматичної моделі науко-

вого дослідження. 

 Результати роботи програми: створення та редагування розіграшів; 

прийняття заявок на участь у розіграшах; визначення переможців; здійснення 

нарахування бонусів переможцям; надсилання нотифікації про виграш у 

розіграші. 

 

6. Економічні показники 

До економічних показників входять: 

- витрати на розробку не більше 80 тис. грн 

- приведена вартість прибутку за 3 роки 500 тис. грн. 

- мінімальна дохідність не менше 42% 

- термін окупності не більше 3 років 

 

7. Стадії розробки 

a) Аналіз предметної області та системи, що слід оптимізувати  20.09 – 02.10 

б) Вибір інструментів розробки    02.10 – 10.10 

в) Дизайн архітектури та імплементація компонентів системи  11.10 – 01.11 

г) Аналіз та оптимізація системи  02.11 – 13.11 

д) Економічна частина  15.11 – 17.11 

е) Оформлення матеріалів до захисту МКР  17.11 – 20.11 

 

8. Порядок контролю та приймання 

Рубіжний контроль провести до «01»     11     2023 р. 

Попередній захист МКР провести до «21»    11     2023 р. 

Захист МКР провести д о  « 18» грудня 2023 р. 

 

Розробив студент групи 1ІСТ-22м _________ Дмитро МАЛЬОВАНИЙ  



 

92 

Appendix B (mandatory)  

Graphical section 

 

 

 

 

Figure B.1 – Workflow diagram of the DSS module and its application in the system 

 

  



 

93 

Continuation of Appendix B 

 

 

 

 

Figure B.2 – Component diagram of jackpot system for commerce gamification 

 

  



 

94 

Continuation of Appendix B 

 

 

 

 

 

Figure B.3 – Class diagram of DSS module 

  



 

95 

Continuation of Appendix B 

 

 

 

 

 

Figure B.4 – Class diagram of RNG module 

 

  



 

96 

Continuation of Appendix B 

 

 

 

 

 
Figure B.5 – Design of web component for monitoring and configuring games 

 

 

  



 

97 

Continuation of Appendix B 

 

 

Figure B.6 – Entity relations diagram of the database  



 

98 

 

Appendix C (mandatory) 

Code listing 

 

@Slf4j 

public class DbDrivenJackpot extends AbstractJackpot { 

 

    private final JackpotStashService stashService; 

    private final JackpotSettingsService jackpotService; 

    private final JackpotCriteriaService criteriaService; 

    private final CurrencyService currencyService; 

    private final CurrencyConvertationService convertationService; 

    private final WinService winService; 

    private final NotificationSender notificationSender; 

 

    private volatile long lastStoredIteration; 

 

    private final AtomicInteger activeStateCalls = new AtomicInteger(0); 

    private final AtomicInteger jpSumUpdateCalls = new AtomicInteger(0); 

 

    public DbDrivenJackpot(JackpotGame jackpotGame, 

                           JackpotSettings jackpotSettings, 

                           JackpotStashService stashService, 

                           JackpotSettingsService jackpotService, 

                           JackpotCriteriaService criteriaService, 

                           CurrencyService currencyService, 

                           @Qualifier("dbCurrencyConverter") 

                                   CurrencyConvertationService convertationService, 

                           WinService winService, 

                           NotificationSender notificationSender) { 

        super(jackpotGame, jackpotSettings, null, jackpotSettings.getSeed(), true); 

        lastStoredIteration = jackpotGame.getCurrentIteration(); 

 

        this.stashService = stashService; 

        this.jackpotService = jackpotService; 

        lastRetrievedJackpotSum = stashService.getCurrentJackpotSum(jackpotSettings.getJackpotId()); 

 

        this.criteriaService = criteriaService; 

        this.currencyService = currencyService; 

        this.convertationService = convertationService; 

        this.winService = winService; 

 

        this.notificationSender = notificationSender; 

    } 

 

    /** 

     * Wins jackpot and sends notification on which sum by which player was won. 

     * It also IMPLIES that the winning row has been put to the database. 

     * 

     * <p>//TODO: currently logic doesn't check if operations such as updating jackpot seed and other parameters have succeeded 



 

99 

     * 

     * @param player player data who won the jackpot 

     * @return true if the jackpot win notification succeeded 

     */ 

    @Override 

    public boolean winJackpot(Player player) { 

        log.info("Jackpot {} is won", jackpotSettings.getJackpotId()); 

 

        double winningAmount = getWinStash(); 

        jackpotSettings.setSeed(jackpotSettings.getSeed() * jackpotSettings.getSeedMultiplier()); 

        jackpotSettings = jackpotService.update(jackpotSettings); 

 

        winService.saveWinRecord(getWinRecord(player, winningAmount)); 

 

        //Force update of the state and iteration 

        updateActiveState(); 

        getCurrentJPSum(); 

        updateIteration(); 

 

        stashService.deleteAllButCurrentStashFor(jackpotSettings.getJackpotId()); 

 

        return sendWinNotification(player.getPlayerId(), winningAmount, jackpotGame.getCurrency()); 

    } 

 

    /** 

     * Calculates number of iterations as total of won bets for specific jackpot. 

     */ 

    protected final void updateIteration() { 

        lastStoredIteration = winService.getIterationsCountFor(jackpotSettings.getJackpotId()); 

        jackpotGame.setCurrentIteration(lastStoredIteration); 

    } 

 

    protected final WinRecord getWinRecord(Player player, Double winningAmount) { 

        WinRecord winRecord = new WinRecord(); 

 

        winRecord.setJackpotId(jackpotSettings.getJackpotId()); 

        winRecord.setCurrency(jackpotGame.getCurrency().getIsoCode()); 

 

        winRecord.setEventArrivalTime(new Date(System.currentTimeMillis())); 

 

        winRecord.setPlayerId(player.getPlayerId()); 

        winRecord.setWinningAmount(winningAmount); 

 

        return winRecord; 

    } 

 

    /** 

     * Defines if the currently written row should be the winning one. 

     * 

     * @return true if the contribution is winning, false otherwise 

     */ 

    protected boolean contributionIsWinning() { 

        return criteriaService.getBetResult(this) == HitOrMiss.HIT; 



 

100 

    } 

 

    /** 

     * Aggregates a sum of between the last and the penultimate winning rows, 

     * last winning row inclusive, and adds to a seed amount. 

     * //TODO: agree with customer, if they want to store a part of the won jackpot 

     * //TODO: as a seed for a next one, if so, re-implement 

     * 

     * @return a sum that is won 

     */ 

    private double getWinStash() { 

        double lastWonJackpotSum = stashService.getLastWonJackpotSum(jackpotSettings.getJackpotId()); 

        if (lastWonJackpotSum < 0) { 

            return 0; 

        } else { 

            return lastWonJackpotSum + jackpotSettings.getSeed(); 

        } 

    } 

 

    /** 

     * Returns the balance of the current jackpot. 

     * Also fetches it from the database before returning. 

     * 

     * @return the most fresh balance of the jackpot 

     */ 

    @Override 

    public double getCurrentBalance() { 

        //TODO: temporally activates once per 1000 requests (for hist data testing). Change to update every turn in prod 

        getCurrentJPSumUpdateIterationsIfRelevant(); 

 

        return jackpotSettings.getSeed() + lastRetrievedJackpotSum; 

    } 

 

    /** 

     * Updates private field responsible for the last stored jackpot sum (only sum of contributions, excluding seed). 

     */ 

    protected void getCurrentJPSumUpdateIterationsIfRelevant() { 

        //TODO: rework with caching 

        if (jpSumUpdateCalls.incrementAndGet() >= 10_000) { 

            getCurrentJPSum(); 

            String jackpotId = jackpotSettings.getJackpotId(); 

            notificationSender.sendEvent( 

                    new JackpotStateChangeEvent(jackpotGame.getCurrency().getIsoCode(), 

                                                jackpotGame.getJackpotGameId(), 

                                                winService.getLastWinRecordForPot(jackpotId).getEventArrivalTime(), 

                                                jackpotId, 

                                                getCurrentBalance())); 

        } 

    } 

 

    protected void getCurrentJPSum() { 

        jpSumUpdateCalls.set(0); 

        log.debug("Retrieving current jackpot sum for jackpot: {}", jackpotSettings.getJackpotId()); 



 

101 

 

        lastRetrievedJackpotSum = stashService.getCurrentJackpotSum(jackpotSettings.getJackpotId()); 

        log.info("Jackpot: {}, iteration is: {}, sum is: {}", 

                 jackpotSettings.getJackpotId(), lastStoredIteration, lastRetrievedJackpotSum); 

    } 

 

    /** 

     * Updates operated fields of the Jackpot. 

     * Updates only those fields that require to be the most fresh values. 

     */ 

    protected void updateJackpotSettingsToActualValues() { 

        updateActiveStateIfRelevant(); 

        getCurrentJPSumUpdateIterationsIfRelevant(); 

    } 

 

    /** 

     * Changes `is_active` state of the jackpot, based on the result of {@link JackpotGame#checkInactivateRule()}. 

     * Inactivates jackpot if it returns true, activates otherwise. 

     * If the {@link JackpotGame#getIsActive()} already equals to the desired condition, no database update will occur. 

     */ 

    protected void updateActiveStateIfRelevant() { 

        //TODO: rework with caching 

        if (activeStateCalls.incrementAndGet() >= 100_000) { 

            updateActiveState(); 

        } 

    } 

 

    protected void updateActiveState() { 

        activeStateCalls.set(0); 

        log.info("Retrieving active state for jackpot: {}", jackpotSettings.getJackpotId()); 

 

        boolean isActive = jackpotGame.getIsActive(); 

        updateJackpotActiveToOnCondition(!jackpotGame.checkInactivateRule(), isActive); 

    } 

 

    /** 

     * Changes a value of `is_active` to a {@code valueToSet} if it is not already has such value. 

     * 

     * @param valueToSet   value to set status to 

     * @param currentValue condition value 

     */ 

    private void updateJackpotActiveToOnCondition(boolean valueToSet, boolean currentValue) { 

        if (valueToSet != currentValue) { 

            jackpotSettings = jackpotService.updateIsActive(jackpotSettings.getJackpotId(), valueToSet); 

        } 

    } 

 

    /** 

     * Sends notification via FeignClient to the auth service, which, in turn, sends it to all the frontend sockets in pool. 

     * 

     * @param playerId id of player who won 

     * @param amount   won amount 

     * @param currency currency of won amount 



 

102 

     * @return true 

     */ 

    @Override 

    protected boolean sendWinNotification(Integer playerId, double amount, Currency currency) { 

        JackpotWinEvent jackpotWinEvent = new JackpotWinEvent(playerId, 

                                                              jackpotGame.getJackpotGameId(), 

                                                              jackpotSettings.getJackpotId(), 

                                                              amount, 

                                                              currency.getIsoCode(), 

                                                              false); 

        try { 

            notificationSender.sendEvent(jackpotWinEvent); 

        } catch (RetryableException e) { 

            log.error("Failed to send win notification! Event: {}. Stacktrace: ", jackpotWinEvent, e); 

        } 

        return true; 

    } 

 

    /** 

     * Resulting Callable puts {@link JackpotStash} entity into a database 

     * and returns {@literal true} if insertion succeeds. 

     * 

     * <p>{@link JackpotStash} in this case has the following fields: 

     * <ul> 

     *     <li>jackpot id</li> 

     *     <li>amount, which is defined as: 

     *     <ul> 

     *          <li>if jackpot funding type set to {@literal FIXED}, 

     *          as a fixed amount stored in the jackpot config</li> 

     *          <li>if jackpot funding type set to {@literal PERCENTAGE}, 

     *          as a specified percentage from the following bet</li> 

     *      </ul> 

     *      </li> 

     * 

     * </ul> 

     * 

     * @param betRequest bet request received in request to the service 

     * @return {@link Callable} of {@link Boolean} with function putting bet request 

     * @throws UnsupportedCurrencyConvertationException if convertation failed 

     */ 

    @Override 

    protected Callable<Boolean> processBetRequest(PlaceBetRequest betRequest) { 

        updateJackpotSettingsToActualValues(); 

 

        if (!jackpotGame.getIsActive()) { 

            log.warn("The jackpot {} is inactive and cannot accept new bets", jackpotSettings.getJackpotId()); 

            return getBetNotPlacedCallable(); 

        } 

 

        Currency originCurrency = 

                currencyService.getCurrencyByIsoCode(betRequest.getWagerDetails().getCurrencySymbol()); 

        Currency targetCurrency = jackpotGame.getCurrency(); 

        double originAmount = betRequest.getWagerDetails().getAmount(); 



 

103 

        double convertedAmount; 

 

        try { 

            convertedAmount = convertationService.convertCurrency(originCurrency, targetCurrency, originAmount); 

        } catch (IllegalArgumentException e) { 

            log.warn("Specified amount is not greater than 0! Message: {}", e.getMessage()); 

            return getBetNotPlacedCallable(); 

        } catch (UnsupportedCurrencyConvertationException e) { 

            log.warn("Convertation operation not supported! Message: {}", e.getMessage()); 

            return getBetNotPlacedCallable(); 

        } 

 

        try { 

            jackpotSettings.checkAgainstBetConstraints(convertedAmount); 

        } catch (IllegalArgumentException e) { 

            log.warn("Bet is not compliant with the constraints! Stacktrace: ", e); 

            log.warn("Placed bet: {} {} was converted to: {} {} and didn't pass constraints! Stacktrace: ", 

                     originAmount, originCurrency.getIsoCode(), convertedAmount, targetCurrency.getIsoCode(), e); 

            return getBetNotPlacedCallable(); 

        } 

 

        JackpotStash jackpotStash = new JackpotStash(); 

        jackpotStash.setJackpotId(jackpotSettings.getJackpotId()); 

        jackpotStash.setPlayerId(betRequest.getPlayerDetails().getPlayerId()); 

 

        if (jackpotSettings.getFundingType().getName().equals("FIXED")) { 

            jackpotStash.setAmount(jackpotSettings.getContributionFixed()); 

        } else { 

            jackpotStash.setAmount(convertedAmount * jackpotSettings.getContributionPercentage()); 

        } 

        //Temporal assignment is used to avoid non-atomic operation on volatile field 

        //noinspection UnnecessaryLocalVariable 

        double temp = jackpotStash.getAmount() + lastRetrievedJackpotSum; 

        lastRetrievedJackpotSum = temp; 

 

        if (contributionIsWinning() && !isJackpotBeingWon) { 

            isJackpotBeingWon = true; 

            lastRetrievedJackpotSum = 0; 

            jackpotStash.setWinning(true); 

        } 

        return new JackpotStashPlacer(jackpotStash, betRequest.getPlayerDetails().getPlayerId()); 

    } 

 

    protected final Callable<Boolean> getBetNotPlacedCallable() { 

        return () -> false; 

    } 

 

    /** 

     * Checks if the bet placed into is winning, and if it is, runs a winning sequence and updates jackpot. 

     * If not winning, nothing is performed. 

     * 

     * @param jackpotStash jackpot stash to check against winning condition 

     * @param playerId     id of player 



 

104 

     */ 

    protected void performWinIfRelevant(JackpotStash jackpotStash, Integer playerId) { 

        if (jackpotStash.isWinning()) { 

            winJackpot(() -> playerId); 

            isJackpotBeingWon = false; 

        } 

    } 

 

    private volatile boolean isJackpotBeingWon = false; 

 

    /** 

     * Supplementary wrapper on {@link Callable} of {@link Boolean} 

     * to perform additional checks and logic on the entity placement into the database. 

     */ 

    @AllArgsConstructor 

    private class JackpotStashPlacer implements Callable<Boolean> { 

 

        private JackpotStash jackpotStash; 

        private Integer playerId; 

 

        @Override 

        public Boolean call() { 

            try { 

                performWinIfRelevant(stashService.placeJackpotContribution(this.jackpotStash), playerId); 

                return true; 

            } catch (IllegalArgumentException e) { 

                return false; 

            } 

        } 

 

    } 

 

} 

 

@Slf4j 

public abstract class AbstractJackpot implements Jackpot { 

 

    @Getter 

    protected final JackpotGame jackpotGame; 

    protected ExecutorService executorService; 

    @Getter 

    protected JackpotSettings jackpotSettings; 

    protected BetResolver betResolver; 

    protected volatile double lastRetrievedJackpotSum; 

    private LinkedBlockingDeque<PlaceBetRequest> pendingBets; 

    private int executorCounter; 

    private boolean isBetProcessingStarted = false; 

 

    public AbstractJackpot(JackpotGame jackpotGame, JackpotSettings jackpotSettings, 

                           BetResolver betResolver, double lastRetrievedJackpotSum, 

                           boolean isToStartProcessingImmediately) { 

        this.jackpotGame = jackpotGame; 

        this.jackpotSettings = jackpotSettings; 



 

105 

        this.betResolver = betResolver; 

        this.lastRetrievedJackpotSum = lastRetrievedJackpotSum; 

        this.executorService = Executors.newSingleThreadExecutor(); 

 

        if (isToStartProcessingImmediately) { 

            startBetProcessingCycle(); 

        } 

    } 

 

    /** 

     * A method to run in the background and put bets to database. 

     */ 

    protected final void startBetProcessingCycle() { 

        if (!isBetProcessingStarted) { 

            //actually this block will be activated at maximum only once for every instance normally 

            isBetProcessingStarted = true; 

            pendingBets = new LinkedBlockingDeque<>(); 

            //starts a new thread to operate on requests simultaneously 

            new Thread(() -> { 

                ExecutorService betsProcessor = Executors.newCachedThreadPool(); 

                List<PlaceBetRequest> requests; 

                //actually loop is infinite and persists until the object is destroyed 

                while (true) { 

                    requests = new ArrayList<>(); 

                    pendingBets.drainTo(requests, 50); 

                    try { 

                        betsProcessor.invokeAll(requests.stream().map(req -> (Callable<Void>) () -> { 

                            performSingleBetOperation(req); 

                            return null; 

                        }).collect(Collectors.toList())); 

                    } catch (InterruptedException e) { 

                        log.error("Executor interrupted for jackpot: {} ! Stacktrace: ", 

                                  jackpotSettings.getJackpotId(), e); 

                    } 

                } 

            }).start(); 

 

        } else { 

            log.warn("For jackpot: {}, the bet processing is already started!", jackpotSettings.getJackpotId()); 

        } 

 

    } 

 

    protected void performSingleBetOperation(PlaceBetRequest betRequest) { 

        if (betRequest == null) { 

            log.warn("Passed request is null!"); 

            throw new IllegalArgumentException("Null bet request cannot be processed!"); 

        } else { 

            int showLiveEveryNRequests = 50_000; 

            if (executorCounter++ >= showLiveEveryNRequests) { 

                //TODO: remove if not needed. For now serves a purpose for correlation testing 

                String humanReadableCount = String.valueOf(executorCounter); 

                int offset = humanReadableCount.length() % 3; 



 

106 

                humanReadableCount = offset != 0 

                                     ? (humanReadableCount.substring(0, offset) + "'") 

                                     : "" 

                                       + String.join("'", humanReadableCount.substring(offset).split("(?<=\\G\\d{3})")); 

                log.info("Another {} requests accepted.", humanReadableCount); 

                executorCounter = 0; 

            } 

            try { 

                processBetRequest(betRequest).call(); 

            } catch (Exception e) { 

                log.error("Unexpected error while handling bet request: {}. Stacktrace: ", betRequest, e); 

            } 

        } 

    } 

 

    @Override 

    public Future<Boolean> bet(PlaceBetRequest betRequest) { 

        return executorService.submit(() -> pendingBets.add(betRequest)); 

    } 

 

    /** 

     * This method defines how to treat bet request received. 

     * It must be implemented according to the logic and requirements of each specific implementation. 

     * 

     * @param betRequest bet request received in request to the service 

     * @return {@link Callable} of {@link Boolean} indicating if the operation was successful 

     */ 

    protected abstract Callable<Boolean> processBetRequest(PlaceBetRequest betRequest); 

 

    protected void onSendMoneyFailover() { 

        log.error("Failed to send money! Started failover!"); 

    } 

 

    protected boolean sendWinnerInvoice(Player player) { 

        return sendWinNotification(player.getPlayerId(), getCurrentBalance(), jackpotGame.getCurrency()); 

    } 

 

    @Override 

    public BetEvent processBet(PlaceBetRequest betRequest) { 

        return betResolver.resolveBet(betRequest); 

    } 

 

    protected boolean sendWinNotification(Integer playerId, double amount, Currency currency) { 

        log.trace("Received arguments: {}, {}, {}", playerId, amount, currency); 

 

/** 

 * Represents an interface which logical entities of Jackpot should provide. 

 * 

 * @author dmaliovanyi 

 * @since 06.12.2021 

 */ 

public interface Jackpot { 

 



 

107 

    /** 

     * Starts placing bet into specified {@link Jackpot}. 

     * Returns true if request passed check and has been taken into processing. Placing the bet itself is asynchronous. 

     * 

     * @param betRequest event to place 

     * @return future with boolean, which will be true if request passed restriction checks; false otherwise. Evaluated once a thread of this 

event happened 

     * @throws IllegalArgumentException if null passed 

     * @see #processBet(PlaceBetRequest) 

     */ 

    Future<Boolean> bet(PlaceBetRequest betRequest); 

 

    /** 

     * Performs logic to make client side notified about the jackpot is won, 

     * and perform all the required actions to set a jackpot to a playable state. 

     * 

     * @param player player who won the jackpot 

     * @return true if the operation succeeded 

     */ 

    boolean winJackpot(Player player); 

 

    /** 

     * Processes bet request and returns the result of operation. 

     * 

     * @param betRequest bet request to process 

     * @return resulting {@link BetEvent} 

     */ 

    BetEvent processBet(PlaceBetRequest betRequest); 

 

    double getCurrentBalance(); 

 

    JackpotSettings getJackpotSettings(); 

 

} 

 

  



 

108 

Appendix D 

Act of incorporation 

 

 

 

  



 

109 

Appendix E (mandatory) 

Plagiarism check protocol 

 

 


