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ABSTRACT
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In the work, a technology for key-phrases retrieval based on Ukrainian
reviews data in a cross-domain setting is developed, models for sentiment analysis
and reviews rating estimation are created. The emphasis is set on modelling in the
setting of noisy and imbalanced data.
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INTRODUCTION

Relevance of the problem Recent advances in NLP sphere, which is primary
relevant to neural network based approaches provided researches with a possibility
to tackle large variety of difficult tasks (NER[1], NEL[2], QAJ[3], etc.) and pushed
limits for machine text comprehension. Those technologies allow companies to
transform unstructured text data to the structured output that is easier to understand
and analyze. Text analysis is very much relevant to the B2B companies which are
monitoring mass media towards specific businesses for the sake of analytical reports
creation and business insights provision. One of the key features that is often in-
cluded in analytical reports is sentiment analysis w.r.t specific company and prede-
fined time range. Although sentiment analysis provides general insights about com-
pany’s well-being, it doesn’t address the question of causes that influenced such a
result. The task relevant to extraction of the causes of sentiment is called Aspect-
Based Sentiment Analysis[4].

Despite of the fact that pre-trained models for solving the task do exist, most
of them are relevant only to one domain. What is more, open-source solutions to
ASBA are mostly based on processing of English language and creation of a new
labeled dataset requires much amount of time and lots of manual work. The task of
ASBA is relevant to classifying sentiment towards identified aspects. If to unite task
of ASBA and aspects identification, the overall task can be reformulated in the fol-
lowing manner: retrieve key aspects and classify them with respect to sentiment la-
bels. If to consider that overall sentiment of the sentence is a composite of aspects
sentiments, the other reformulation of the task appears: retrieve key aspects that in-
fluenced predicted sentiment label the most. Other problem where such a formula-
tion is applicable is relevant to summarization of reviews relevant to specific entity
based on extraction of key phrases that influenced explicit ratings. The only differ-
ence in formulation for this task is that instead of sentiment label, the retrieval is

done towards rating.



Generally, the task can be formulated in an abstract way: retrieve key textual
features that influenced predicted label the most.

Actuality of the work lies in the new formulation of unsupervised ABSA task
and solution to the problem of unsupervised key-phrases retrieval for Ukrainian lan-
guage. As it was already mentioned, most of the solutions to ABSA are mostly rel-
evant to English language, which makes it much harder to either find relevant da-
tasets or pretrained models for Ukrainian language. Same situation is observed when
speaking about general sentiment analysis or reviews rating estimation. Taking into
account the problem of reviews summarization, it’s important for summarization
methods to pay attention to sarcasm, words order and other complex patterns in lan-
guage. Due to the subjectivity of reviews, it’s mandatory to use noise-robust meth-
ods, that learn to generalize and not overfit to the data. What is more, considering
that textual data is completely human-generated, there could be many errors and
typos in words, which would result in a big number of different tokens, that can
influence model both during training and inference.

A methodology relevant to solving highlighted problems is presented in this
work. The primal focus is set on processing of Ukrainian language and solving the
task of key influential phrases extraction in the bounds of cross-domain reviews. The
work showcases usage of deep-learning and classical machine learning algorithms
to learn the conditional distribution of the data and application of explainable Al
techniques to extract most influential textual features. The presented solution is
cross-domain, adaptable to new data, easy to enhance and requires to store only
model and tokenizer, which can also be used to estimate ratings for reviews. As the
part of work, a real-world dataset of Ukrainian reviews is collected, which can be
used to further advance NLP sphere for Ukrainian language. Models that are used
for extraction of key phrases, can also be utilized for sentiment analysis and reviews
scores estimation. Big emphasis is set on thorough data preprocessing and experi-

mentations with techniques for tackling noisy data.



The purpose of the work is to develop a technology for key phrases retrieval
which is more efficient than its analogs, is adaptive to unseen data and new domains
and is more convenient for enhancements.

The following problems should be solved to achieve a goal:

1. Conduct analysis of existing methods and approaches to text classification,
explainable Artificial Intelligence and key-phrases retrieval.

2. Collect the reviews data for different domains.

3. Analyze collected dataset, clean and process it.

4. Choose, train and evaluate algorithms for estimating reviews score and sen-
timent.

5. Choose explainable Al algorithms for key-phrases retrieval.

6. Construct an algorithm for key-phrases retrieval and evaluate it towards
different explainable Al algorithms.

Research methods. The following research methods are used in the work:
analysis, forecasting of results, modeling of the system, classification of existing
entities, analysis of the development results and their adjustment, summarization of
the performed works.

The object of work are processes of information search, text classification,
artificial intelligence explainablity and information retrieval for Ukrainian language.

The subject of work are methods of information processing, deep learning ar-
chitectures for text classification, methods of convex optimization, approaches to
explainable artificial intelligence.

Scientific novelty lies in collection of a cross-domain dataset containing
Ukrainian reviews; solving problem of reviews score estimation and sentiment anal-
ysis for Ukrainian language; solving problem of automatic key phrases retrieval and
summarization for Ukrainian language.

Practical value of the work lies in providing a ready-to-use technology for
key-phrases retrieval for Ukrainian language in a cross-domain setting, models
trained for sentiment analysis and reviews rating estimation and processed reviews

dataset that can be utilized for in depth analysis or further modeling.



Approbation and publications of the work results. The research paper summa-
rizing the work on the 1st stage of the All-Ukrainian competition of student papers
in artificial intelligence on October 16, 2023 (excerpt from the protocol of the com-
petition commission of VNTU dated October 16, 2023 is attached, appendix C) pre-
sented during MODS2023 conference and is awaited to be published in LNNS
(“Lecture Notes in Networks Systems™) journal (appendix D). Codebase of module
relevant to inference of final algorithm has been accepted for a copyright procedure
at October 2023.



1 CURRENT STATE OF PROBLEM AND PREVIOUS WORK REVIEW

It’s mandatory to analyze previous work that intersects with described method
in order to prove the novelty of scientific discovery, identify weak and strong points,
and choose approaches to build on and enhance.

The presented approach to solving problem of key-phrases retrieval can be
divided into two steps:

Train a generalized discriminative model. In our case the input to the model
Is textual data and expected output is the correct probabilities for classes associated
with data.

Apply explainable Al techniques to make reverse-engineering and extract
those phrases that contributed the most to final decision of the model.

Thus, the aforementioned pipeline operates in two particular spheres: text classi-
fication and explainable Al. Nevertheless, approach to tackling the problem and for-
mulation is a novel one, several similar works exist. In this chapter, previous work
relevant to text classification, explainable Al, aspects ranking and unsupervised
ABSA is discussed.

1.1 Problem analysis

The task of key-phrases retrieval has many usages, including feedback sum-
marization, content analysis, market research and social media monitoring. Speak-
ing of reviews summarization, the solution to the task gives an opportunity to rapidly
understand pros and cons of specific entity, providing client with useful information
that can help to enhance user-experience, and giving vendor an opportunity to im-
prove entities quality and understand the aspects which influenced the overall rating.
Nevertheless, there are many solutions to the problem, most of them require lots of
labeled data that is complicated to collect. Giving the fact that there are many dif-

ferent domains of reviews, the task becomes even more complicated. Finally, most
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of solutions exist for English language, with little to zero research done for Ukrain-
lan one, which presents an obstacle for adopting the technology for Ukrainian re-
views data. A feasible solution to the highlighted task would require the following
qualities:

The solution should be cross-domain, meaning that approach should work
well across multiple domains of reviews. Such quality would provide an opportunity
to use same approach for multiple types of data simultaneously without a need for
adopting to new domains, that could require more time and resources. Moreover,
making a solution

Convenience of adaptation to new domains. Although the aforementioned
quality states that solution should be cross-domain, the one would want to finetune
it to his/her own data or extend it to novel domains.

Convenience of algorithm’s extension. Possibility to extend and enhance al-
gorithm is mandatory for adopting the solution to real world scenarios and incorpo-
rating it into the production pipeline.

The solution should be lightweight and fast. This quality is mandatory for so-
lution incorporation and is tightly connected to convenience of algorithm’s exten-
sion.

Finally, the solution should work with Ukrainian language.

1.2 Primer on deep-learning for NLP

1.2.1 Embeddings

Embeddings layer is the basis for deep-learning based NLP and is defined as
a relatively low-dimensional space into which the one can translate high-dimen-
sional vector. The logic behind embeddings is based on distributional hypothesis,
which states that words with similar contexts tend to have similar meanings. By con-

text, the words and phrases are meant. Ideally, embeddings capture some of the se-
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mantics of the input by placing semantically similar inputs close together in the em-
bedding space. Embeddings are often trained using word co-occurrence statistics
from large corpora. Words that frequently co-occur are assigned vectors that are
close, reflecting their semantic proximity. Unlike traditional methods like one-hot
encoding, which create discrete representations, embeddings place words in a con-
tinuous vector space. This continuity allows for more flexible and nuanced repre-
sentations of language. Through their ability to capture the underlying semantics of
words, embeddings aid in improving generalization. This is especially helpful in sit-
uations when it's probable that some language use variants aren't covered by the
training data. Based on the semantic information embedded in embeddings, the
model is able to extend its understanding. Speaking of usage of embeddings inside
deep learning architectures, they are often used to map unique words into vectors
which are then processed by other layers of the network. Embeddings layer is often
used in a transfer-learning setting:

1. Embedding along with other layers is pretrained using unsupervised learn-
ing for language understanding or similar task.

2. Pretrained embedding layer is incorporated into other models for solving
downstream tasks. During this stage, embedding is either finetuned or frozen.

Embeddings are used in many spheres of NLP and have many usages, includ-
ing:

e Semantic similarity. Assessing the semantic similarity of words is one of
the main uses of word embeddings. Close vectors in the high-dimensional space
represent words with comparable meanings.

e Word similarity and analogy. Operations like word analogy and similarity
are made possible by embeddings. Consider the well-known scenario: king - man +
woman = queen. These kinds of comparisons can be investigated in the vector space,
demonstrating how embeddings can capture word associations.

e Machine translation. By representing words or phrases in a source lan-
guage and transferring them to a target language, embeddings are essential to ma-

chine translation. This aids in keeping the meaning intact while translating.
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e Named entity recognition (NER). Embeddings help NLP tasks like NER
by allowing the model to comprehend the context and relationships between items
by modeling entities in a continuous vector space.

e Classification. For text classification tasks, embeddings—which capture
semantic subtleties in word representations—are powerful features. Their capacity
to gather contextual data expands the feature space and aids in the creation of clas-

sifiers that perform better.
1.2.2 Convolution

Convolutional layers are widely used in image processing and state-of-the-art
computer vision models due to translation invariance. Convolutional layers can also
be applied towards textual data. In this setting convolutional kernel “scans” the tex-
tual vector with a specific stride. Kernel size can be roughly referred as a number of
unigrams that are aggregated together (n-grams), whereas number of filters is rele-

vant to number of different representations of aggregation (formula 1.1).
(f*9 @ = Xi5% gD = fE—)) (1.1)

where f is the input sequence, g is the filter or kernel, M — lengths of sequence, j —
position withing filter or kernel.

Convolutional layers are primarily used because of their capacity for local
feature extraction. This refers to identifying patterns or characteristics within a lim-
ited context, like a small window of words, in the context of text. Convolutional
layers utilize parameters sharing, which allows same set of weights to be applied
across different positions in the input sequence. The sharing of parameters gives an
opportunity to detect similar patterns at different locations, making the model more
efficient. A certain amount of translation invariance is offered by convolutional lay-

ers. This indicates that regardless of a pattern's precise location within the input se-
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quence, the model is able to identify it. This is useful for capturing the same linguis-
tic patterns that appear at different places within a text. Convolutional layers are
frequently used with pooling layers (like max pooling) to lower dimensionality and
preserve the most important information. By highlighting the salient characteristics
in a given area, pooling aids in the extraction of pertinent data. What is more, con-
volutional layers give an opportunity to apply multiple filters allowing for richer

representation of text.

1.2.3 LSTM

Long-short-term-memory network, which is a successor of recurrent neural
network is primarily used for fitting sequential data. LSTM is a successor of RNN
(recurrent neural network) architecture. Given the fact that text is a sequential data
by nature, LSTM if often used for tackling NLP tasks. As in vanilla RNN, the output
from the previous step is fed as input to the current step. LSTM enhances RNN by
partially solving “vanishing” gradients problem. The intuition behind the LSTM ar-
chitecture is to create an additional module in a neural network that learns when to
remember and when to forget pertinent information. LSTM introduced gate mecha-
nisms, that are constraining the information that is persevered inside the layer. In
particular the following mechanisms are used:

1. Forget gate. The forget gate decides which information needs attention and
which can be ignored.

2. Input gate. The input gate decides what relevant information can be added
from the current step.

3. Output gate finalizes the next hidden state.

LSTMs are appropriate for tasks where understanding context over extended
periods of time is critical because they are made to capture long-term dependencies
in sequences. In order to solve problem of “exploding” gradients relevant to huge
values of computed gradients, the gradient of LSTM is sometimes limited to prede-

fined maximal number. Because LSTMs can handle sequences of different lengths,
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they are useful for a variety of applications, including time series analysis, speech
recognition, and natural language processing. Schematic workflow of the LSTM

layer is shown on figure 1.1.
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Figure 1.1 — Schematic workflow of LSTM layer

1.2.4 Attention

Attention mechanism is another core technology in the sphere of NLP. Defi-
nitely attention was mostly popularized by the paper of Vaswani et. al. [5], in which
self-attention was introduced. Before the introduction of Transformers architecture,
attention was applied to such tasks as machine translation[6], target sentiment anal-
ysis and others. The core of any attention is to compute “attention weights” that
weight information w.r.t given context. Attention mechanism is often used to aggre-
gated output of LSTM hidden states in a non-linear way. The same aggregation can
be used as an explainable Al mechanism, where attention weights can be interpreted
as importance of each hidden state representation of input feature. If to consider
classification task (in this case model reflects encoder architecture plus classification

head), the attention can be defined by the following formula, where W1, W?2 are
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attention weights, h - hidden states from LSTM, a — attention weights, ¢ — weighted

context (formula 1.2):

a = softmax(W,®tanh (W;®h))

c = h®a

1.2.5 Dropout

(1.2)

Dropout presented by Hinton et.al [7] is a regularization technique used to pre-

vent neural networks from overfitting. By randomly deactivating (or "dropping out")

a portion of neurons during training, dropout aims to prevent neurons from becoming

unduly specialized and to encourage the network's generalization (figure 1.2)
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Figure 1.2 — Example of dropout regularization

Dropout arbitrarily sets a portion of the neurons’ outputs to zero on each forward

pass through the network. The probability of dropout is a hyperparameter. The drop-

out process is stochastic, meaning that each training iteration different neurons are

dropped out. This introduces a form of noise during training process, which prevents

the network from relying too heavily on any particular set of neurons. Usually, drop-

out is disabled during the inference or testing phase, and predictions are made using
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the entire network. To compensate for the fact that more neurons were active during
training, the weights of the neurons are scaled by the dropout probability. Since dif-
ferent subsets of neurons are active during each iteration, dropout can be understood
as an ensemble learning process for neural networks. Better generalization is made
possible by this ensemble effect. Dropout is especially useful while working with
noisy data, providing an opportunity to reduce overfitting and increase generaliza-

tion.

1.2.6 Spatial dropout

Spatial dropout is a variant of the traditional dropout regularization technique that
is specifically made for convolutional layers. Spatial dropout expands on the concept
of traditional dropout by randomly eliminating entire channels or feature maps from
the input during each forward pass. By adding noise at the feature map level, spatial
dropout discourages overfitting and promotes the learning of more resilient features.
When applied to word embeddings, spatial dropout can be conceptualized as a type
of "whole-word dropout."” By setting all of the word's embedding values to zero dur-
ing training, it eliminates entire words or tokens from the sequence as opposed to
just individual elements. By dropping out entire words, spatial dropout encourages
the model to learn more robust representations for words. It prevents the model from
relying too heavily on specific words and helps in generalizing better to variations

in the input data.

1.2.7 Batch normalization

Batch normalization is a technique to improve training stability and convergence
by normalizing the input of each layer of neural network in a mini-batch. Batch nor-
malization works by first normalizing a layer's inputs, and then using learnable pa-

rameters to scale and shift the normalized values. Every feature in the mini-batch
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goes through this procedure separately. Batch normalization works in the following
way (figure 1.3):

1. For each feature in the mini-batch, batch normalization normalizes the input
to have zero mean and unit variance. This is done by subtracting the mean of the
mini-batch and dividing by its standard deviation.

2. The results are then scaled and shifted by learnable parameters which are
learned through gradient descent and back propagation.

3. The results of moving average for mean and standard deviation are updated

within model.
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Figure 1.3 — Schematic description of computations performed by batch

normalization

During inference the information of moving average for mean and standard in-
formation is used for calculations. By scaling the data batch normalization helps
mitigate issues related to vanishing or exploding gradients, enabling more stable and
faster training of deep neural networks. Utilization of batch normalization effec-
tively reduces internal covariate shift, making the optimization landscape more con-
sistent across mini-batches. Batch normalization is especially useful in the context

of cross-domain data, as normalizing the inputs within each mini-batch makes model
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more robust to differences between domains and reduces domain specific covariate-
shift.

1.2.8 Layer normalization

Layer normalization is another technique which is used to normalize input on
each layer of neural network. Layer normalization is often applied in recurrent neural
networks and transformer architectures. In contrast to batch normalization, layer
normalization normalizes the input along the feature dimension, typically applied
independently to each example. Layer normalization works in the following way:

1. Layer normalization normalizes data along the feature dimension. For each
example in the mini-batch, normalization is applied independently across all fea-
tures. Formula is the same as in the case of batch normalization.

2. Same as in the case of batch normalization, layer normalization utilizes two
learnable parameters to scale and shift input data.

Layer normalization reduces the dependency on batch statistics during train-
ing. Each example is normalized independently, making it less influenced by the
statistics of the entire batch. In batch normalization, statistics are computed per mini-
batch during training, and a moving average is typically used during inference. In
layer normalization, statistics are computed independently for each example during
both training and inference. Considering the fact, that in many tasks relevant to NLP
sphere, the sentences with varying length are utilized, using batch normalization
would result in an uncertainty relevant to appropriate normalization constant. Thus,

layer normalization is recommended for use w.r.t recurrent layers.
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1.3 Primer on classical machine learning for NLP

1.3.1 Logistic regression

Logistic regression is a statistical method used for binary classification, by
predicting the probability that an instance belongs to a specific class. Logistic re-
gression is trained by optimizing binary cross-entropy loss function. Logistic regres-
sion applies sigmoid function to map linear combination of input features to a value

between 0 and 1, representing the probability of positive class (figure 1.4).

,—@—. Predicted class label

Net input Sigmoid Threshold
function activation |  fynction
function |

i Conditional probability that a
Seos s sample belongs to class | given its
input vector x

Logistic Regression

Figure 1.4 — Schematic description of logistic regression

In order to reduce overfitting, both L1 and L2 regularization can be used, with
parameter C influencing the strength of it. For logistic regression the normalization
of input data is beneficial, as it both speed ups training and leads to better conver-
gence. Logistic regression assumes linear relationships between the features and log-
odds of the responsive variable. Even though logistic regression is mainly used for
binary classification, there are possibilities of applying algorithm for multiclass clas-
sification. One of the choices for solving the problem is utilize “One-vs-Rest” strat-
egy. A binary classifier is trained for each class in the “OvR” strategy, treating it as
the positive class and all other classes as the negative class. As a result, a set of

binary classifiers is produced, one for every dataset class. An important benefit of
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logistic regression is its interpretability, which helps to understand influence of fea-

tures towards particular class in the global sense.

1.3.2 SVM

Support vector machine (SVM) aims to find a hyperplane in a high-dimen-
sional space that best separates instances of different classes. SVM is often called
maximum margin classifier. The margin is the distance between the hyperplane and
the nearest instance from each class. SVM seeks to maximize this margin, providing
better generalization to unseen data. Support vectors are the instances that lie closest
to the hyperplane. These are the critical instances that influence the position and
orientation of the hyperplane. The margin is computed based on the distance from
the support vectors to the hyperplane. SVM has internal mechanism for dealing with
overfitting. In real-world scenarios, data might not be perfectly separable, thus a
“soft margin” is introduced. The regularization parameter C controls the trade-off
between maximizing the margin and allowing misclassification and is similar to the
same parameter used in logistic regression. SVM allows usage of specific kernel
functions, that make algorithm more flexible and provide an opportunity to learn
non-linear relationships. Speaking of multiclass classification, “One-vs-All” strat-
egy can be applied. SVM is often used for text classification due to possibility of
capturing non-linear relationships, which is essential for complex data. Although
SVM is more robust to overfitting than logistic regression, its less interpretable, es-

pecially when using complex kernel functions.

1.3.3 Gradient boosted trees

Gradient boosted trees is an ensemble machine learning technique based on
decision trees. The algorithm builds multiple decision trees sequentially, where each
tree corrects the mistakes of the previous one. Each time a new tree is trained to the

residual of algorithm and expected output on the previous stage. Basically, number
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of trees inside ensemble can be referred as number of learning iterations and influ-
ences the complexity of resulting ensemble. The process begins with the creation of
the first tree, that is called “base learner” on top which all the other trees are build.
In case of gradient boosted trees, learning rate determines the contribution of each
tree to the overall ensemble. Gradient boosted trees are optimized via gradient de-
scent. One of the advantages of the algorithm is relevant to the fact that scaling of
data isn’t required, due to the fact decision trees inside gradient boosted ensemble
make splits based on comparison of features at individual nodes. These splits are
determined by finding the optimal thresholds for features that would allow to sepa-
rate data into different classes or values in the best possible way. The scaling of
features doesn’t affect the order of aforementioned thresholds. Even though, gradi-
ent boosted trees is an ensemble method, it’s still very explainable. The one can
analyze decision rules made by certain trees or get information of feature im-
portance, based on how often the feature leads to split. Like in the case with logistic
regression, the internal explainability is a global one. In order to prevent overfitting,
gradient boosted trees utilizes such tools as tree pruning and shrinkage. Tree pruning
restricts the growth of individual trees, and shrinkage controls the contribution of
each tree. GBT is often utilized while working with complex data and big number

of features, thus making it a candidate for problem of text classification.

1.4 Previous work analysis

1.4.1 Text classification

Recent research leverages plenty of methods for solving the tasks of classifi-
cation based on textual data. The approaches can be divided into two groups based
on utilized algorithms: classical machine learning and deep learning ones. Classical
machine learning algorithms require thorough data preprocessing, which often in-
cludes words normalization based on lemmatization or stemming; stop-words re-

moval and vectorization of data using TF-IDF[8]. Then processed features are used
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as an input to a classifier, such as Gradient boosted trees[9], SVM[10] or Logistic
Regression[11]. Nevertheless, such approaches are inferior to deep-learning ones in
terms of accuracy, they are still utilized due to speed of training and inference and
high interpretability.

Utsha et al.[12] apply extreme gradient boosted trees along with TF-IDF to
tackle the task of multiclass fake news detection; Das et al.[13] utilize classical ma-
chine learning models on the task of sentiment analysis, showing that TF-IDF text
vectorization along with NWT (Next word negation) preprocessing step and SVM
achieves pretty high accuracies w.r.t three datasets. There is also a tendency of using
additional textual features such as POS (Part of speech) tags[14] or NER (Named
entity recognition)[15] to boost performance of models.

Other approaches suggest usage of word embeddings as a text vectorization
method[16], however usage of embeddings make classical machine learning models
less interpretable.

Deep-learning based methods achieve state of the art results on many bench-
marks relevant to textual data input. Such methods work well especially when big
data is available, as they tend to find hidden structures in text and generalize well.
Embedding layer is a basis for deep-learning based approaches, as it’s used to map
token identifiers to real value vectors. Embeddings allowed researchers to use trans-
fer-learning and leverage knowledge of models trained on big textual corpus for
downstream tasks.

Yoon Kim[17] applied convolutional neural network on top of Word2Vec em-
beddings for text classification. Each convolutional layer was applied to embeddings
in parallel, where number of filters was relevant to n-gram size.

Other approaches utilized more sophisticated models which are based on re-
currency. LSTM and its variations are widely used for text classification nowadays.
Sachan et al.[18] used simple one-layer Bidirectional LSTM along with mixed ob-
jective for training to achieve state-of-the-art results on various datasets. At the same
time many researchers tend to combine CNNs with LSTMs to enhance the perfor-

mance of overall model. Chunting Zhou et al.[19] proposes a C-LSTM, model which
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applies one dimensional convolution right after embeddings layer to extract high-
level representations, which are then fed into LSTM layer, showing superior results
w.r.t other methods.

CNNs are also used right after LSTM layer, in order to aggregate and process
hidden states in a non-linear way instead of just retrieving the last one. For instance,
Peng Zhou et al.[20] utilize Bidirectional LSTM with two-dimensional CNN layers,
which outperforms C-LSTM on five datasets.

Other researchers tend to aggregate hidden states from LSTM layer using at-
tention mechanism. Wang et al.[21] propose model which uses LSTM along with
attention mechanism to tackle the problem of aspect-based sentiment analysis. The
attention combines both hidden representations of sentence tokens and aspect em-
beddings to produce the final output vector which is then fed into classification layer.

Recent research features approaches, based on transformers and self-attention,
which are superior to others in cases when big datasets are available. Nevertheless,
performance of such models is pretty stunning, they are way less explainable than
those based on LSTMs and CNNSs.

1.4.2 Explainable Al for text classification

Explainable Al is very important field, main goal of which is to interpret pre-
dictions made by machine learning models. Explainable Al techniques are often
used to monitor performance of model w.r.t biases and promote end user trust. Ex-
plainable Al methods can be classified into three categories: Intrinsically Interpret-
able Method, and Model Agnostic Methods and Example-Based Explanations. One
of the methods to achieve explainable Al is to use intrinsically explainable methods
like logistic regression, decision trees and their ensembles. However, such explain-

ability comes with a cost of performance.



24

Attention mechanism can also be considered as an intrinsically explainable
method, even though it only partially explains model’s results. While logistic regres-
sion and decision trees explain model’s decision globally, attention mechanism pro-
vides a local perspective.

Model-agnostic methods separate explanation from a machine learning
model, allowing it to be compatible with a variety of models. Model-agnostic
method that is often used is surrogate-based explanations. The main idea of it is to
train a simpler model on top of original model’s predictions and explain the simpler
one, which is called a “surrogate”. Surrogate-based methods are also divided into
global and local ones, as in the example regarding logistic regression and attention
mechanism.

One of the famous algorithms that is build on local explainability is LIME
(Local Interpretable Model-Agnostic Explanations)[22]. LIME trains an inherently
interpretable model on the new dataset constructed from the permutation of samples
and corresponding predictions of the model. Trained “surrogate” model can be a
good approximator of global behavior, it doesn’t provide a good approximation for
a global one.

Shapely is another local explanation method, which is based on game theory.
Main idea behind the method is based on an assumption that each feature value is a
player in a game and the prediction is an overall payout that is distributed among
players.

Example-Based explanations are mostly model-agnostic [23] and explain
model predictions by selecting instances of the dataset and not by creating summar-
ies of features.

There also exist approaches relevant to specifically analyzing neural networks
outputs using gradient-based attribution methods [24]. However, Wang et.al [25]
showed that gradient-based analysis of NLP models is manipulable, leaving a space

for possible adversarial attacks.
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1.4.3 Aspects ranking and unsupervised aspect-based sentiment analysis

Several works similar to ours in terms of task exist. Aspect ranking is a pro-
cess of identifying important product aspects from online consumer reviews.

Yu et. al[26] presented an approach which consisted of three steps: aspect
identification, aspect sentiment classification and aspect ranking. Nevertheless, the
approach seemed to be effective in comparison with methods of Hu et. al [27] and
Wu et. al [28], it includes the estimation of parameters for three models (2 SVMs
and parameters for Gaussian distribution), which is hard to adopt to new data and
can be slow during inference. Approach was shown to work for English language.
In comparison, our approach only needs to train model ones and then apply explain-
able Al techniques to identify important aspects w.r.t labels model was trained on.
As it was already mentioned, our approach can be thought of as the instance of un-
supervised aspect-based sentiment analysis.

Advantages:

e Suppresses other methods of similar kind in terms of NDCG metric.

e The proposed approach consists of several steps, which broadens number
of possible usages, as each step can be used separately and be integrated into other
applications.

Disadvantages:

e Can be computationally extensive, as it includes training of 3 parametric
models: SVM for identifying frequent terms, SVM for aspects sentiment classifica-
tion and multivariate gaussian distribution for aspects ranking.

e By utilizing 3 different parametric models, its complicated to enhance al-
gorithm.

e Due to the aforementioned reason, the utilization of algorithm to new data
becomes even more complex.

e Lack of contextualization.

Garcia-Pablos et.al [29] presented an unsupervised approach to aspect-based

sentiment analysis, that utilized Word2Vec model to identify aspects and detect their
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polarity. The authors operated in two domains in English: restaurants and laptops
reviews. In order to get list of multiwords, the log-likelihood ratio was applied. To
detect entity-attributes, Word2Vec model was utilized. Based on predefined seed
words relevant to entities and attributes, the sentences were annotated with most
similar entity-attribute pair. Then the polarity is computed by difference of similar-
ities between the word at hand a positive anchor word and word at hand and negative
anchor word. Based on polarity of words, the sentences are labeled as either positive
or negative. In comparison to aforementioned approach, the one presented in this
work is more adaptable to new data and is aware of context.

Advantages:

e Fully unsupervised approach that builds on top of predefined dataset and
pretrained Word2Vec model.

e Easy to use, no need for additional modeling.

Disadvantages:

e Results are equal to the baseline or worser.

e Lack of contextualization.

e Approach is not convenient for adaptation to new data sources, as there is
no option of handling out of vocabulary tokens.

Hercig et.al [30] tackled the problem of unsupervised aspect-based sentiment
analysis for Czech language, by breaking the task into 4 separate problems: aspect
term extraction, aspect term polarity, aspect category extraction and aspect category
polarity. The problems are tackled by training CRF (Conditional Random Fields)
model for aspect term extraction, utilizing maximum entropy classifier for the task
of aspect term polarity detection, using same type of classifier for identifying the
category of aspects and their polarity. All the models operate in domain of hand-
crafted features. Once again, our approach can be easily adopted for unsupervised
aspect-based sentiment analysis, has fewer number of steps and is much easier to
use.

Advantages:

e Achieves pretty high f1 score (around 80% for all the tasks).
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e The proposed approach consists of several steps, which broadens number
of possible usages, as each step can be used separately and be integrated into other
applications.

Disadvantages:

e Can be computationally extensive, as it includes training of 4 parametric
models.

e By utilizing 4 different parametric models, its complicated to enhance al-
gorithm.,

¢ Due to the aforementioned reason, the utilization of algorithm to new data
becomes even more complex, as each time models should be retrained.

e Lack of contextualization.

So far, the most similar research to ours is the master’s thesis of Dmytro
Bobenko [31]. In his work, the author tackled the problem of determining sentiment
and most influential phrases for each review. The data was collected from TripAd-
visor and Booking websites, resulting into the dataset of 164k reviews. The author
trained models for sentiment detection and used PMI (pointwise mutual information)
to globally create dictionary of negative/positive phrases, which is then used to de-
termine most influential phrases for each classified review. In comparison, the da-
taset collected in this work is cross-domain and is much bigger (662k reviews); the
key phrases extraction works locally which makes it more contextualized and appli-
cable for new data; similarly to authors we used f1-score as a main metric, however
due to imbalance nature of the data the “macro” averaging was applied in contrast
to “weighted”, which assigns greater contribution to classes with more examples and
IS not representative of model performance w.r.t all the classes. Other differences
are depicted further throughout the work.

Advantages:

e Approach operates in Ukrainian language and provides a model trained
for sentiment classification, which can be used for further research.

e Approach utilizes clustering of n-grams in order to get the most valuable.
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Disadvantages:

e Approach utilizes weighted fl1-score which isn’t representative of class
imbalance.

e The approach works by utilizing predefined dictionary of positive and
negative n-grams, which makes it harder to adopt it to new data and domains.

e For model training the plain tokenization is used, which means that there
is no way of handling OOV tokens and model is less memory and time efficient.

e Approach operates only in one domain.

e Lack of contextualization in terms of key-phrases retrieval.

1.5 Conclusion

In this chapter the discussion touches on the state of problem at hand, analysis
of competitor approaches and technologies used for text classification.

Recent advances in the sphere of NLP prior to text classification and explain-
able Al are analyzed. The emphasis is set on mechanics of embeddings, convolution
for textual data, long-short-term-memory network, infamous attention mechanism
and methods for model regularization and stabilization. Also, the description of clas-
sical machine learning algorithm including logistic regression, gradient boosted
trees and SVM was provided.

The exhaustive analysis of similar works was provided, strong and week
points of each were highlighted. So far, the most similar work to this one is of Dmy-
tro Bobenko. However, his approach operates only in one domain, is limited for
adopting to new data and enhancements and doesn’t take context into account.
That’s why there is a strong need in creation of a more universal approach towards

key-phrases (aspects) extraction.
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2 ANALYSIS OF TOOLS TO ACCOMPLISH THE TASK

2.1 Analysis of word embeddings

One of the popular methods for pretraining embeddings is Word2Vec pre-
sented by Mikolov et.al [32]. Word2Vec model has several regimes of training:

Skip-gram and CBOW (continuous bag of words) (figure 2.1).
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As it can be seen from diagram above, CBOW method is order agnostic and
tries to predict middle word based on summation of project word vectors relevant to
left and right context, whereas Skip-gram does the inverse and thus doesn’t use any
aggregation at projection stage. Such training allows to learn mathematical repre-
sentations which are similar for those words which are similar in terms of their con-
text (figure 1.2).

Advantages of Word2Vec method:

1. Efficiency: Word2Vec is efficient due to the usage of shallow neural net-
work, making it feasible to train on big corpora.

2. Semantic relationships: Word2Vec captures relationships between words,
allowing for meaningful vector arithmetic.

3. Convenience of integration: it’s pretty easy to integrate learned Word2Vec
embeddings into machine learning algorithm and leverage transfer learning.

Disadvantages of Word2Vec method:

1. Contextual information: Word2Vec ignores contextual information within
a sentence.

2. Out of vocabulary words handling: as Word2Vec learns fixed-size vectors
for each word, it’s not possible to get vector representation for words that were miss-
ing in training corpora.

fastText[34] is another method for acquiring word vectors, which is an exten-
sion of aforementioned Word2Vec method. fastText represents words as bags of
character n-grams, enabling to handle morphological variations and unseen words
more effectively. Also, working on the level of character n-grams helps to effectively
handle suffixes and prefixes.

Advantages of fastText method:

1. Semantic relationships: fastText captures relationships in a way veery sim-
ilar to aforementioned method.

2. Out of vocabulary words handling: due to usage of character n-grams,
fastText model is capable of handing out of vocabulary words by summing or aver-

aging subwords vectors.
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Disadvantages of fastText method:

1. Contextual information: similar to Word2Vec, fastText ignores contextual
information within a sentence.

2. Increased complexity: due to the usage of character n-grams, number of
tokens is increased, making training of the model more computationally expensive.

Convenience of integration: it’s complicated to integrate fastText with all its
features into other machine learning model.

ELMO (Embeddings from Language model)[34] is a method for getting con-
textual embeddings of sentences and paragraphs. Contextual information plays a
crucial role in shaping the meaning of words and phrases, allowing to achieve a
deeper and more accurate understanding of language. The need for contextual infor-
mation comes from the problem of words ambiguity, which is relevant to same
words having different meanings in different context. For instance, word “bank”
could refer to a financial institution or the side of a river. ELMO applies bidirectional
LSTM in order to generate the vector representation of the sentence. ELMO operates
on character level, building embeddings of words based on characters that construct
it. What is more, the model incorporates task-specific layers, which are added on top
of the LSTM representation to adapt the embeddings to the particular requirements
of the downstream task. It’s interesting that ELMO utilizes a weighted sum of layers
to combine information from different layers of the bidirectional LSTM.

Advantages of ELMO method:

1. Contextual understanding: ELMO captures contextual information within
sentence, allowing for accurate representation of words in the case of ambiguity.

2. Out of vocabulary words handling: working on a character level, ELMO
allows to handle out of vocabulary words.

Disadvantages of ELMO method:

1. Increased complexity: ELMO builds on top of multi-layer bidirectional

LSTM, which increases complexity of the overall training and inference.
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2. Convenience of integration: increased complexity of the algorithm directly
influences convenience of its integration by making training on custom data compu-
tationally demanding.

Based on conducted analysis, it was decided to use Word2Vec method, as it’s
easy to pretrain it on custom dataset in a fast manner and it’s convenient in terms of

integration and transfer learning.

2.2 Analysis of tokenization and words normalization methods

2.2.1 Lemmatization

Lemmatization is one of the most common word normalization techniques
applied in NLP. The lemmatization tries to reduce word to its root. It does so by
removing inflections or variations to get to the base or dictionary form. Lemmatiza-
tion typically involves dictionary look-up to identify the correct lemma for a given
word. This step requires access to a comprehensive dictionary or lexicon. Lemmati-
zation ensures that words share a common representation, facilitating more accurate
analysis and understanding of textual data. Lemmatization often incorporates part-
of-speech tagging to disambiguate between homographs (words with the same
spelling but different meanings) and determine the correct lemma based on the
word's grammatical role. It’s worth mentioning that lemmatization is language de-
pendent, meaning that for different languages different lemmatizers should be used.
This downside comes from the fact that lemmatization uses dictionary-based ap-
proach to reduce words to their dictionary forms. Also, as each language has its own
structures and features, it’s complicated to create a universal approach that would
work for each one. Lemmatization helps to reduce number of tokens (dimensionality
reduction) and at the same time preserves their semantic meaning. Even though,
lemmatization tend to enhance semantics of words, it can lead to loss of contextual
information. Also, lemmatization is sensitive to context shift and might not capture

the changing nuances and context-specific variations in language.
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Advantages:

¢ Reduces number of words by transforming them into the lemma.

o Still preserves some semantics of words.

Disadvantages:

e Lemmaitization is language dependent.

e Can’t handle OOV tokens, thus will not help much in a context of words
with typos and errors, won’t probably result in huge dimensionality reduction for
complicated and noisy textual data.

e Could decrease contextualization.

2.2.2 Stemming

Stemming is another method for tokens normalization that is based on trans-
forming words into their roots. Stemming algorithms typically work by removing or
replacing word suffixes or prefixes, based on a set of predefined rules or heuristics.
Some common stemming algorithms include the Porter Stemmer, Lancaster Stem-
mer, and Snowball Stemmer. Same as for lemmatization, stemming is language-
dependent. Stemming algorithms often rely on rule-based approaches, where rules
are defined to capture common prefixes or suffixes that can be removed to obtain
the stem. These rules are language-specific and need to be tailored to the linguistic
characteristics of each language. The most common operation in stemming is suffix
stripping, where suffixes are systematically removed to obtain the root form of a
word. Stemming algorithms vary in aggressiveness. Aggressive stemmers aim for
higher reductions but may risk over-stemming, while conservative stemmers priori-
tize retaining more linguistic specificity. There also exist more advanced approaches
for stemming that are based on machine learning and address some challenges,

which commonly exist in traditional rule-based methods.
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Advantages:

e Reduces number of words by transforming them to their root. Possibly
should result in even greater reduction in number of unique tokens then lemmatiza-
tion.

e Computationally less expensive than lemmatization.

Disadvantages:

e Stemming is language dependent.

¢ Might produce incorrect stems for OOV tokens, leading to inconsistent and
incorrect representations.

e Lack of contextualization, which holds same for stemming as for lemmati-
zation,

e Could lead to problem of over-stemming, which can result in words that

have different meaning having the same stem token.

2.2.3 BPE

BPE (Byte-Pair-Encoding) is a compression technique that found a big popu-
larity in application to NLP sphere. BPE allows to tokenize text into subwords,
which is a solution between word and character-based tokenization. BPE operates at
the subword level, breaking down words into smaller units or subword tokens. The
central idea behind BPE is a compression principle where frequent sequences of
characters are progressively replaced with a single, unused token. This process is
iteratively applied until a specified vocabulary size is reached. BPE ensures that the
most common words are represented in the vocabulary as a single token while the
rare words are broken down into two or more subword tokens. BPE tokenization
process can be simply described by the following stages:

1. Start with a vocabulary containing individual characters and their frequen-
cies.

2. Identify the most frequent pair of adjacent characters in the current vocab-

ulary. Merge this pair into a new token.
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3. Update the vocabulary with the newly created token. Repeat this process
iteratively until the desired vocabulary size is achieved.

As it was mentioned during the description of BPE tokenization process, BPE
provides a possibility to preselect number of tokens, thus controlling the complexity
and dimensionality of data. By working on a subword level, BPE is effective when
working with noisy data that includes word with typos and errors. After tokenization
using BPE, word can be presented as representations of their subwords, giving an
opportunity to have similar vector representation for same word with typos.

Advantages:

¢ Incorporated functionality for choosing number of unique tokens, allowing
for flexibility and effective dimensionality reduction.

e Handling OOV tokens and unseen data.

e Possibility of handling noisy data.

e Language independent.

Disadvantages:

¢ A need to train an algorithm in order to learn subwords, which makes BPE
sensitive to training data.

¢ Increased sequence length because of subword tokens.

2.3 Analysis of programming languages

2.3.1 Java

Java is a multi-platform, object-oriented, and network-centric language that
can be used as a platform in itself. It is a fast, secure, reliable programming language
for coding everything from mobile apps and enterprise software to big data applica-
tions and server-side technologies. Java's performance is significantly enhanced by
its use of Just-In-Time (JIT) compilation. This means that Java code is compiled into

machine code at runtime, allowing for optimizations that can boost execution speed.
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Java's memory management through garbage collection contributes to stable and ef-
ficient memory handling. While it introduces some overhead, modern Java Virtual
Machines (JVMs) are optimized to minimize the impact on performance. Java ben-
efits from a mature and extensive ecosystem. This ecosystem includes tools, librar-
ies, and frameworks that can aid in optimizing and accelerating deep learning appli-
cations. Even though Java may not be as commonly associated with deep learning
frameworks as languages like Python, its performance characteristics make it a via-
ble choice in certain scenarios. Java can seamlessly integrate with optimized native
libraries, enhancing its numerical computation capabilities. Leveraging libraries like
MKL or OpenBLAS can significantly boost the speed of mathematical operations
crucial in deep learning. Java provides many libraries that can be used to accomplish
tasks relevant to machine learning, data analysis and deep learning including famous
Tensorflow, Weka and Deeplearning4j.

Advantages:

¢ Platform independence assures that applications written in Java can be de-
ployed on various platforms with no modification.

e Java is known for its scalability, which is essential for distributed compu-
ting.

e Java's native support for multithreading is beneficial for concurrent execu-
tion, making it suitable for tasks like parallelizing deep learning model training.

¢ Java has many libraries for accomplishing machine learning and data anal-
ysis tasks.

Disadvantages:

e Java is not as prevalent as Python in the deep learning community. Many
deep learning frameworks and tools are primarily developed and optimized for Py-
thon, potentially limiting the available resources and community support for Java.

e Java may be perceived as slower for prototyping compared to dynamically
typed languages.

e Complexity in doing dynamic data analysis.
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2.3.2 Julia

Julia is a dynamic, high-level, and high-performance programming language
designed for technical computing. It was created to address the need for a language
that combines the ease of use of scripting languages with the performance of lower-
level languages, making it well-suited for numerical and scientific computing tasks.
Julia is renowned for its performance, often reaching levels comparable to languages
like C and Fortran. This is achieved through just-in-time (JIT) compilation, allowing
Julia code to be dynamically compiled to machine code for efficient execution. Julia
features multiple dispatch, a programming paradigm that enables highly expressive
and generic code. Functions can be specialized for different types and combinations
of types, promoting flexible and extensible designs. Julia's syntax is designed to be
readable and resembles mathematical notation, making it accessible to users from
diverse backgrounds. Its user-friendly syntax contributes to fast development and
prototyping. Julia has built-in support for distributed and parallel computing. This
enables users to scale their computations across multiple processors or nodes, mak-
ing Julia suitable for handling large-scale and computationally intensive tasks. Julia
IS built with interoperability in mind. It can easily interface with other languages like
C, Fortran, and Python, facilitating integration with existing libraries and tools. All
the aforementioned features of Julia make it a candidate for accomplishing the tasks
which were already highlighted in the work.

Advantages:

e Julia is designed with a focus on performance, often comparable to low-
level languages like C or Fortran. This makes Julia well-suited for high-performance
computing tasks, including deep learning.

e Julia provides a syntax that is easy to read and write, resembling
mathematical notation. This can contribute to faster development and prototyping,

crucial aspects in the iterative process of deep learning model creation.
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e Similar to Java, Julia uses JIT compilation. This allows for efficient
compilation of code, making it performant and adaptable to different hardware
architectures.

e Julia has libraries designed specifically for deep learning, whereas its
interoperability with other languages provides even more tools.

Disadvantages:

e While Julia’'s community is growing, it is not as extensive as communities
for languages like Python. This can result in fewer resources, tutorials, and
community-contributed models compared to more established languages.

e Julia's deep learning ecosystem, while promising, might not be as mature
as those in languages like Python. Well-established frameworks like TensorFlow
and PyTorch have larger user bases and extensive documentation.

e Julia is still gaining traction in industry applications compared to more
established languages like Python. This could influence the choice of Julia for deep

learning in certain enterprise settings.

2.3.3 C++

C++ is a general-purpose programming language that extends the capabilities
of the C programming language. Developed by Bjarne Stroustrup, C++ combines
procedural, object-oriented, and generic programming features, making it a versatile
and powerful language. C++ is widely used in various domains, including system
programming, game development, embedded systems, and high-performance com-
puting. C++ is known for its high-performance capabilities. It allows low-level
memory manipulation and provides features like pointers, making it suitable for ap-
plications that demand efficient resource utilization. C++ supports object-oriented
programming, enabling developers to organize code into classes and objects. This
paradigm promotes code reuse, modularity, and a clearer organization of software
components. C++ code can be highly portable across different platforms and oper-
ating systems. This makes it a preferred choice for applications that need to run on
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diverse environments. Speaking of its usage for deep learning purposes, C++ can be
used to implement performance-critical components, taking advantage of its effi-
cient memory management and low-level capabilities which is essential for deep
learning.

Advantages:

e C++ Is very performance efficient and is suitable for implementing
performance-critical components for deep learning models.

e C++ provides manual memory management, allowing developers fine-
grained control over memory. This is beneficial for optimizing memory usage in
deep learning applications.

e C++ provides libraries relevant to deep learning, which are specifically
optimized for the language.

Disadvantages:

e Usage of C++ may result slower and more complex prototyping because of
lack of dynamic features.

e It’s not very convenient to apply data processing and analysis using C++.

2.3.4 Python

Python, created by Guido van Rossum and first released in 1991, is a high-
level, general-purpose programming language known for its readability, versatility,
and extensive community support. Its design philosophy prioritizes code readability
and ease of use, making it an excellent choice for beginners and a powerful tool for
professionals across various domains. ython's syntax is designed to be clear and
readable, emphasizing code readability and reducing the cost of program mainte-
nance. This feature contributes to Python's popularity among developers. Python is
an interpreted language, allowing for rapid development and testing. Its dynamic
typing provides flexibility but also necessitates careful consideration of variable
types during execution. Python abstracts many complex operations, allowing devel-

opers to focus on solving problems rather than managing low-level details. This
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high-level approach accelerates development and promotes code simplicity. Python
is inherently cross-platform, enabling code written on one operating system to run
on others with minimal modifications. This portability enhances the versatility of
Python applications. Python has huge community and lots of use cases, including:
web-development, data science and analysis, scientific computing, automation and
machine learning along with deep learning. Python has huge number of libraries that
extend its capabilities, including deep-learning specific libraries like Tensorflow,
Pytorch, Caffe and others. Despite Python seems as the best candidate because of
convenience of code prototyping and its dynamic nature, it all goes with the cost of
reduced performance and higher memory consumption.

Advantages:

e Python is a dynamic language, which provides more convenience in terms
of dynamic data analysis, data preprocessing and algorithms prototyping.

e Python has a large and active community in the deep learning space. This
vibrant community contributes to a wealth of tutorials, documentation, and shared
knowledge, fostering collaborative development and problem-solving.

e Python, similarly to Julia provides syntaxis which easy to write and read,
enhancing its prototyping abilities even more.

e Python has many libraries to speed up and vectorize computations, perform
complex data analysis tasks and do modeling.

Disadvantages:

e Python's Global Interpreter Lock (GIL) can limit the concurrency of multi-
threaded programs.

e Python's resource consumption may be higher compared to languages like
C++ in certain scenarios.

e Python's interpreted nature can lead to slower execution speeds compared
to compiled languages like C++.

Based on analysis of programming languages, Python was chosen due to pre-

vious familiarity with it, huge number of libraries and its dynamic nature.
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2.4 Analysis of modelling frameworks

Speaking about the process of modelling, in particular constructing the archi-
tecture of algorithm, its training and evaluation, the choice of framework is crucial.
Nowadays, most popular frameworks for modeling and working with deep-learning
are TensorFlow[35] and PyTorch[36]. While TensorFlow and PyTorch are general
purpose deep-learning frameworks, there are specialized frameworks for addressing
tasks in NLP sphere, such as Gensim[37], HuggingFace[38] and others. Speaking of
classical machine learning, a very common library is scikit-learn. While scikit-learn
has decent implementations of classical machine learning algorithms, there special-
ized libraries that contain advanced implementations of specific algorithms, like
XGBoost[39] and LightGBM[40].

2.4.1 TensorFlow

TensorFlow views models as DAGs (directed acyclic graphs) and follows the
idiom of “data as code and code as data”. TensorFlow is designed for scalability,
enabling the development of models that can seamlessly transition from local envi-
ronments to distributed systems. This scalability is crucial for handling large datasets
and training complex models. TensorFlow includes TensorBoard, a powerful visu-
alization tool. It allows users to visually inspect and analyze various aspects of their
models, such as training curves, computational graph structures, and embeddings.
TensorFlow supports deployment across various platforms, including mobile de-
vices and embedded systems. This makes it suitable for developing applications in
diverse environments. TensorFlow uses symbolic computations, thus before making
any, the overall graph of mathematical operations is constructed. This specific fea-
ture is the one that makes the framework faster, as at the runtime the defined graph
computations are run using optimized C++ code. However, such feature comes with

a cost. It’s pretty hard to debug TensorFlow computations, graph construction, and



42

operations flow. Luckily, a Keras [41] framework exists, which is an abstraction on
top of TensorFlow, that makes modelling much easier and faster.

Advantages:

e TensorFlow has a wide community that supports it. Its community-driven
development and continuous updates contribute to its status as a leading deep learn-
ing library.

e TensorFlow seamlessly integrates with Keras, a high-level neural networks
API. This integration combines TensorFlow's power with Keras's simplicity, provid-
ing an accessible interface for rapid model prototyping.

e TensorFlow is a computation-efficient framework, which is essential for
deep learning application.

e TensorFlow has specific functionality for optimizing models during and af-
ter training in terms of their size and latency.

Disadvantages:

e TensorFlow can be resource-intensive, demanding substantial computa-
tional power and memory. This might be a consideration in scenarios with limited
resources or for edge device deployments.

e While TensorFlow supports dynamic computation graphs, the dynamic
graph mode may have some limitations compared to libraries that inherently operate

with dynamic graphs.

2.4.2 PyTorch

PyTorch is a framework introduced by Facebook, which is and extension of
lua-based framework Torch. It can be thought of as the main competitor of Tensor-
Flow. It presents models in the same manner as TensorFlow, but instead of symbolic
definitions, PyTorch works dynamically, giving a possibility to change the architec-
ture and execute different mathematical operations on the fly. This feature allows to
debug architectures and code more easily than with TensorFlow, which makes

PyTorch better for research comparing with pure TensorFlow framework. Recent
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versions of PyTorch come with a bult-in frameworks for model optimization for
low-resource machines and a possibility of using pre-trained models. PyTorch inte-
grates seamlessly with NumPy, a widely used numerical computing library in Py-
thon. This interoperability simplifies data manipulation and encourages a smooth
transition for users familiar with NumPy. PyTorch includes torchvision and torch-
text, specialized libraries for computer vision and natural language processing
(NLP), respectively. These libraries offer pre-built components and datasets for
common tasks. The overall trend of using PyTorch is for the sake of research mod-
elling and production where non-functional requirements are not very demanding.

Advantages:

e The dynamic computational graph in PyTorch is well-suited for tasks where
the model architecture changes dynamically, offering more flexibility for
researchers and developers.

e PyTorch has a strong and active community. The community-driven
development model contributes to regular updates, extensive documentation, and a
wealth of tutorials.

e As in case of TensorFlow, PyTorch has functionality for model
optimization.

e PyTorch has many libraries built on top which make it easier to prototype
models and train them.

Disadvantages:

e For certain production scenarios, the static computational graph used by
TensorFlow and other frameworks may offer advantages in terms of optimization
and deployment.

e Similar to TensorFlow, PyTorch can be resource-intensive, demanding

substantial computational power and memory.
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2.4.3 HuggingFace

Both TensorFlow and PyTorch are often considered as core frameworks, on
top which the other are built. For example, a popular library for pretraining Trans-
formers architectures, named HuggingFace is built on top of both PyTorch and Ten-
sorFlow, giving a possibility of using features of core libraries along with function-
ality of HuggingFace. HuggingFace provides a wide range of pre-trained models
for tasks such as text classification, language translation, summarization, and more.
These models are based on transformer architectures and achieve state-of-the-art
performance on various benchmarks. Hugging Face operates a Model Hub, a plat-
form for sharing and discovering models. Users can easily access and download pre-
trained models for their specific NLP tasks, fostering collaboration and knowledge
sharing. Hugging Face offers tokenization tools that efficiently handle the pro-
cessing of text into tokens for input to machine learning models. The tokenizers sup-
port a variety of languages and tokenization strategies.

Advantages:

e HuggingFace provides access to state-of-the-art pre-trained models, includ-
ing BERT, GPT, and others. These models have achieved top performance on vari-
ous NLP benchmarks and tasks.

e The strong community around Hugging Face contributes to a collaborative
and dynamic development environment.

e The Model Hub serves as a central repository for pre-trained models, mak-
ing it convenient for users to discover, share, and access models for various NLP
tasks. This centralization enhances collaboration and model reuse.

e Hugging Face's tokenization tools are efficient and versatile, supporting a
wide range of languages and tokenization strategies. This aids in preprocessing text
data for input into machine learning models.

Disadvantages:

e Keeping track of model versions and updates may pose a challenge, espe-
cially as the library evolves.
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2.4.4 Scikit-learn

Scikit-learn is an open-source machine learning library for Python that pro-
vides simple and efficient tools for data analysis and modeling. It is built on NumPy,
SciPy, and Matplotlib and offers a wide range of machine learning algorithms for
classification, regression, clustering, dimensionality reduction, and more. Scikit-
learn includes a broad selection of machine learning algorithms, ranging from simple
and interpretable models like linear regression to more complex methods such as
support vector machines and ensemble methods. It also provides tools for data pre-
processing, including methods for handling missing values, scaling features, encod-
ing categorical variables, and splitting datasets into training and testing sets.

Advantages:

e Scikit-learn is designed with simplicity and ease of use in mind. Its
consistent APl and clear documentation make it accessible for users at different skill
levels, from beginners to experienced practitioners.

e The library is versatile and applicable to a wide range of machine learning
tasks, including classification, regression, clustering, and dimensionality reduction.
It is suitable for both small-scale projects and larger, more complex applications.

e Scikit-learn has a large and active community.

Disadvantages:

e Scikit-learn is primarily focused on traditional machine learning algorithms
and may not provide the same level of support for deep learning methods.

e While suitable for many tasks, scikit-learn may face limitations in terms of

scalability for extremely large datasets.
2.4.5 Xgboost
XGBoost (Extreme Gradient Boosting) is an open-source machine learning

library designed for gradient boosting frameworks. Developed to optimize speed and

performance, XGBoost is widely used for supervised learning tasks, particularly in
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structured/tabular data settings, and has gained popularity for its efficiency and ef-
fectiveness in predictive modeling. XGBoost employs a gradient boosting frame-
work, which builds a strong predictive model by combining the outputs of multiple
weak models, typically decision trees. This ensemble approach enhances predictive
accuracy and generalization. XGBoost is designed for efficient parallel and distrib-
uted computing. It leverages features such as column block-ing for parallelization,
making it suitable for large datasets and speeding up training times. XGBoost in-
cludes tree pruning methods that control the depth of individual decision trees. Prun-
ing mitigates the risk of overfitting and contributes to the overall efficiency of the
algorithm. One particular difference between XGBoost and other implementations
of gradient boosted trees lies in the way XGBoost construts trees. XGBoost follows
a leaf-wise growth strategy. In each iteration, it selects the split that offers the max-
imum reduction in loss, leading to imbalanced trees where certain branches can be
deeper than others. This strategy is more aggressive in finding the optimal splits but
can be computationally expensive.

Advantages:

e XGBoost is known for its high performance and efficiency. It often outper-
forms other machine learning algorithms and is particularly well-suited for struc-
tured/tabular data.

o XGBoost provides insights into feature importance, helping users under-
stand which features contribute the most to model predictions.

e The efficient parallel and distributed computing capabilities of XGBoost
make it scalable and well-suited for large datasets.

Disadvantages:

e XGBoost can be resource-intensive, especially in terms of memory usage.

e While XGBoost is powerful, tuning its hyperparameters can be complex.
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2.4.6 Gensim

Gensim is an open-source library for unsupervised topic modeling, document
similarity analysis, and other natural language processing (NLP) tasks. It is designed
to efficiently process large corpora and build scalable models for semantic analysis,
particularly in the context of vector space modeling. Gensim supports the training
of word embeddings using techniques like Word2Vec. It's designed for scalability
and can efficiently process large corpora. It implements streaming algorithms, ena-
bling users to process and analyze documents in a memory-efficient manner. More-
over, Gensim can be easily integrated into NLP pipelines and workflows. It provides
a user-friendly interface for training models, transforming text data, and extracting
semantic information. Gensim can be easily integrated into NLP pipelines and work-
flows. It provides a user-friendly interface for training models, transforming text
data, and extracting semantic information. The core algorithms in Gensim use battle-
hardened, highly optimized & parallelized C language routines.

Advantages:

e Support for Word2Vec that allows users to train word embeddings,
capturing semantic relationships between words.

e Gensim is designed to handle large datasets efficiently. Its streaming
algorithms enable users to process extensive corpora without requiring the entire
dataset to be loaded into memory.

e Gensim benefits from an active community of researchers and developers.

Disadvantages:

e Lacks implementations of more sophisticated embedding models based on
Transformers architectures.

e Gensim is limited to topic modeling and word embeddings and doesn’t
provide as extensive a set of components for comprehensive NLP tasks as some
other libraries.

Tensorflow was picked as the main framework for modelling of deep learning

architectures; Gensim was used for pretraining of Word2Vec embeddings; Scikit-
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learn for training of logistic regression and XGBoost for utilization of Gradient-
boosted trees. Finally, HuggingFace was picked for storing data and models along

with performing text tokenization.

2.5 Conclusions

The comprehensive analysis of tools for accomplishing the aforementioned
tasks was conducted in this chapter. As the result of embeddings analysis, it was
decided to stick to Word2Vec approach because of its simplicity and effectivity in
training and adaptation to more complex models. The discussion touched on com-
parative analysis of tokenization techniques, showing that BPE suppresses lemma-
tization and stemming in terms of OOV tokens handling and provides a possibility
to tremendously reduce number of the unique tokens. The analysis of programming
languages showed that Python is the best choice for solving the task at hand. Finally,

the analysis of libraries for modeling was performed.
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3 DATA COLLECTION, ANALYSIS, PROCESSING AND FILTRATION

As it was already mentioned, in comparison with Bobenko’s work, it was de-
cided to gather bigger dataset that include more domains of reviews. In particular,
the decision was to acquire reviews relevant to three domains: hotels, restaurants
and products. When working with real-world textual data, it’s mandatory to pay at-
tention to mistakes in words, specific characters and symbols, text which is not re-
view but rather a question, etc. In this chapter, the data collection, analysis, filtering

and processing is discussed.

3.1 Data collection

The data was parsed from two websites TripAdvisor and Rozetka. Parsing
which is often referred to as web scrapping is the process of data extraction from
websites and its transformation into structured data. In order to parse big amounts of
data without being banned, a number of techniques were used, including: user-agent
rotation, proxy server and different time intervals between scrapping.

User-agent header is just one of many request headers, main goal of which is
to provide information about request sender’s device, including information of de-
vice type, operating system and browser name and version. Nevertheless, histori-
cally main purpose of user-agent is to optimize served content for different devices,
nowadays websites mostly use this datapoint for tracking. Websites often analyze
user-agent headers to determine whether the request sender is a real user or a bot.
Mostly websites ban those requests which lack user-agent information. There also
situations when sender is banned because of too much requests with same user-agent
information. Either way, the best approach is to use user-agent rotation, the proce-
dure when user-agent information is changed every request. While scrapping data
from TripAdvisor, for each page of hotel/restaurant a different user-agent was used.
Also, each time “Access Denied” message was received, user-agent was substituted

with a new one.
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Generally, every website has a specific limit of requests per amount of time.
When limit of requests is exceeded, the sender IP-address is added to blacklist,
which makes it impossible to work with website using same IP again. There is also
a possibility of captcha appearance, when too much requests are sent from same IP,
which is pretty difficult to solve. In order to by-pass permanent ban by IP, proxy is
used. The main goal of proxy is to hide device’s real IP-address. While visiting the
website with proxy, only IP-address of proxy is exposed. For proxy and IP rotation,
the stem library was used. Stem is a controller on top of Tor browser (which is also
utilized as a proxy server), which gives a possibility to execute commands from Py-
thon. Each time “Access Denied” message was received, IP address was changed
using Tor.

To speed up data collection, multiprocessing w.r.t each entities page was ap-
plied. As both Rozetka and TripAdvisor required few manual interactions, including
button clicks to go to the next page and to show full review text, the automation was
required. To automate manual work while scrapping websites, Selenium was used.
Selenium an open-source automated testing framework, used to validate web appli-
cations across different browsers and platforms. The main advantage of Selenium is
that it’s a cross-platform framework, that can control browser from OS level using
WebDriver. The point of WebDriver is to control browser directly by communi-
cating with it. Nevertheless, the Selenium is mostly used for automation of testing
routines, its functionality allows to automate manual interactions which are manda-
tory for advanced parsing. Before clicking on the button, Selenium should be given
the information regarding button’s location on the page. The search for buttons was
made through class names and XPATH.

For TripAdvisor the information of only Ukrainian hotels and restaurants was
parsed. Data scrapping process for both sites was split into two different steps:

1. Acquiring general information about each entity, including its name, overall
rating and link to its page.

2. Acquiring deeper information relevant to reviews based on already parsed

links.
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During second step of web scrapping, the whole html pages were saved and
then parsed using bs4 (BeautifulSoup) library. BeautifulSoup is a Python framework
used for parsing HTML and XML documents using parse tree. Each time a new page
was opened, or a specific action was performed, the sleep function was used in order
to give browser time to load all the resources. The algorithm for scrapping included
specific rule-based logic, used for navigation over website and receiving of full in-
formation about each review. The algorithm included the following steps:

1. The first page is opened. If information for some pages is already parsed,
scrapping continues from where it was left off.

2. Check whether access to page is denied. If so, IP address along with user-
agent is changed and the check for access denied is retried. In case when “Access
denied” is encountered for more than N times, the algorithm stops. In other cases,
algorithm continues.

3. Checkmark to show all languages is clicked.

4. Checkmark to show full reviews is clicked.

5. Check for pop-up window. If pop-up window is detected it’s closed by
clicking on specific button.

6. Page’s html is saved to disk.

7. Check for “Next page” button availability. If button is available, it’s clicked
and process from 4-7 is repeated. In the other case, the algorithms stops.

In result, the dataset containing 671k reviews was collected. Nevertheless,
many complementary information was parsed, the primer focus was set on the fol-
lowing columns:

 reviews_text — parsed text of original reviews.

. dataset_name — name of domain dataset.

« entity_name — name of unique hotel, restaurant or product for which review
was written.

o rating — rating of review.

A few records from resulting dataset are shown (figure 3.1).
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review dataset_name entity_name rating

59204 Msirkui, HaTypanbHbiin. Ha 3asBneHHble pasmepsbl Mar... rozetka andersen_cotton_plus_cmp204 5.0
103374 Cnopobascs. MNoku We He NPONLWOoB BUNPOBYBAHHA MO... rozetka electro_tf320s 5.0
49760 Bbina B aToM MecTe nepsblil pas, BnevarneHns xopo... tripadvisor_restaurants_ukraine Restaurant_Review-g681193-d12182382-Reviews-La... 5.0
39347 KauecTteeHnHas 1 oueHs nnotHas.Ho ¢ Hee TaXenee ... rozetka freken_bok_14801080 4.0
261413 HaywHukmn cynep. 3ByK 04eHb fOCTOMHbLIN, 6achbl U B... rozetka 35734 5.0
149506 L'endroit est tr?s bien situ? , tr?s sympa, |... tripadvisor_restaurants_ukraine Restaurant_Review-g294474-d10717273-Reviews-Ko... 2.0
77123 OrpomHbii NNtOC pacnonoxerue. Boixoamm Ha ynuuy, ... tripadvisor_hotels_ukraine Apartment Club ZimaSnow Ski & Spa 5.0
77560 Lyxe knacHuin Habip.\nHawka 6omb6a, Hai gyxe cMa... rozetka lovare_4820198877231 5.0
167806 OTvnnuHble HocoBble NnaTku!3 AOCTYNHbLIX HABEPHOE ... rozetka zewa_7322540352313 5.0
238380 MoHpasunock kavecTso Tosapa. [lo6poTHo, 6e3 Hap... rozetka 255970641 5.0
88662 KucnstvHa, npu 3ToM aGCONMIOTHO HEOCTPbLIA. [laxe W... rozetka tabasco_11210009493 2.0
36040 Bce gobpe.\n rozetka 48229646 5.0
38342 |3 3a5BNEHOro KOMNNEKTyBaHHNA He GyNo NOAYLWKK-p... rozetka evo_kids_evo_18_bl 2.0
89807 Henorawuit NPOTEiH, WOKNONAAHUA AOCUTL AOOPUI H... rozetka ab_pro_pro2000abva79 4.0
86247 Kynun ero nerom 2017 roaa, poBHO rog nons3osan... rozetka 9949118 2.0
8650 [Marpwuk MNab - xopowwui nab B8 xunom gome Hepaneko... tripadvisor_restaurants_ukraine Restaurant_Review-g294474-d10209611-Reviews-Pa... 4.0
119898 | was dreaming for macaroons and eclers, we ca... tripadvisor_restaurants_ukraine Restaurant_Review-g295377-d11827697-Reviews-Do... 5.0
145818 We spent few days here in Kyiv and one place w... tripadvisor_restaurants_ukraine Restaurant_Review-g294474-d10593831-Reviews-La... 5.0
18707  [lyxe cnofo6ascs Haniin,m'sKui 3 HACUYEHUM CMaKo... rozetka jacobs_4820187049359 5.0
71476  Mbiwkon nonb3osancs 6onblue roaa, rog akTUBHOIO ... rozetka hator_htm_310 3.0

Figure 3.1 - 20 random samples drawing from originally collected data

3.2 Data preprocessing and analysis

Analyzing the collected dataset, it was found that similarly to the work of

Bobenko, parsed textual data was multi-lingual, including, Russian, Ukrainian and

other languages (19% to Ukrainian and 81% of reviews relevant to other languages).

What is more, TripAdvisor don’t support Ukrainian language at all, thus all the re-

views relevant to hotels and restaurants domains were in other languages. To tackle

this problem, the translation process was automated by utilizing Microsoft transla-

tion in Word application. Each text of review was copy-pasted to Microsoft Word

document and separated by newline character, after which the process of translation

into Ukrainian was executed. As full automation could still result in errors and in-

correct translation, reviews were automatically filtered. Analyzing the distribution

of characters number in the translated reviews, it was found that some of them had

only 1 character and thus were filtered out (appendix B.2).
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Logically if the difference between number of characters in original review
and its translation is too big, translated review could be incorrect or incomplete.
Those reviews for which the difference was bigger than 200 characters were filtered
out.

As the possibility of partial translation on the level of sentences existed, it was
decided to detect and filter out such cases. To achieve this, a fasttext model for lan-
guage detection was utilized. The model was trained in a CBOW (continuous bag of
words) fashion and utilized hierarchical softmax to speed up computations. The in-
put to the model was n-gram text, representation of which was averaged before the
classification layer. Fasttext model is capable to detect text in 176 languages and
was trained on corpora from Wikipedia, Tatoeba and SETimes. What is more, the
trained model is compressed by applying product quantization, which approximates
a real-valued vector by finding the closest vector in a pre-defined structured set of
centroids, making it light-weight and rapid in terms of inference. Translated reviews
were tokenized into sentences and for each sentence the language was detected using
aforementioned fasttext model. Based on this information, partially translated re-
views were filtered out.

Each sentence was tokenized into words using special tokenizer for Ukrainian
language that tolerated both apostrophe and hyphen characters. In order to reduce
vocabulary and normalize tokens, a specific preprocessing that separated letters from
symbols was used. In particular, the space was added between each combination of

letters, symbols and numbers (figure 3.2).

n mn H non non H n " nmom .z m oonnom " om H L1
['rapHa”, "uiHa,", "npoTe”, "AKIcTL", Addition of ["rapHa”, "uiHa", ",", "npoTe", "AKICTL",

"sanuwae", "6axkaTun", "kpaworo."] spaces "sanuuwae", "6axxat", "kKpaworo", "."]

Figure 3.2 — Example of tokens before and after addition of spaces. New tokens are

shown in red.

It’s worth mentioning that after words-based processing, tokens were con-

verted back to sentences in order to allow for other types of tokenization.



54

As some of the reviews could be questions about hotels, restaurants or prod-
ucts, specific heuristic to determine questions based on POS (part of speech) tags
was applied. POS tags were detected using pymorphy2[42] library (appendix B).

Found questions were filtered out from the dataset.

Other preprocessing included deletion of multi-spaces, removal of a newline
character, lowercasing and lemmatization that was only used for classical machine
learning methods. Applied preprocessing resulted in a reduced dataset consisting of
662907 reviews. Dataset included 364935 unique words and 205161 unique lemmas.
Entity name is an essential categorical feature which is used further for final algo-
rithm of key phrases retrieval. There are more than 28k of unique entities with the
median number of reviews equal to 7. The data can be logically split into subsets
w.r.t domains (dataset_name column) and whether the text was translated or not
(translated column). In terms of distribution w.r.t domains, 60% of data is relevant
to products, 28% to restaurants and 12% to hotels reviews. Analyzing the distribu-

tion of ratings, it’s clear that it’s far from even (figure 3.3).

Distribution of ratings in the dataset
450000 65%

400000
350000
300000
250000
200000
150000

16%
100000

50000 7% 7% 5%

5.0 4.0 3.0 1.0 2.0

0

Figure 3.3 - Distribution of ratings across all domains

As the result of analysis, the following conclusions were made:
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1. The fact that number of unique words is pretty huge implies filtering of
stop-words for classical machine learning algorithms and usage of specific tokeniz-
ers for deep- learning based methods to reduce number of tokens.

2. The fact that distribution of ratings is imbalanced, implies usage of specific
techniques to stabilize training procedure and correctly evaluate model performance.

3. The fact that distribution of domains across the dataset is not even and ma-
jor part of reviews are translated can cause model to overfit to one domain. Thus, it
was decided to conduct evaluation of algorithms w.r.t each domain and translated

identifier category.

3.3 Data filtering

The experiments were conducted w.r.t both classical machine learning mod-
els, in particular logistic regression and gradient-boosted trees and deep-learning
based ones, which utilized convolution, recurrent and attention layers. While train-
ing the models, the issue of noisy data was faced, which was caused by the subjec-
tivity of user’s ratings and discrepancy between the actual text of review and its
rating. Such a problem typically arises while working with human generated data.
Thus, in order to filter out misleading data samples, an automotive approach was
used.

Models with different architectures were picked and trained on dataset in a
cross-validation manner, so that each model could generate predictions for each K
fold, while being trained on K-1 folds. Cross validation is a statistical method that is
often used for model selection, as it gives an opportunity to estimate model’s skill
to generalize to the data given different partitions of it as a training one. In K-fold
cross validation, the data is partitioned into K equally sized segments or folds. The
validation is then executed by repeatedly training model on K-1 folds and validating
on K fold. During such a procedure, the metric picked for evaluation is computed
for K fold and preserved for aggregation. Typically, mean or median aggregation is

used to get information of general performance of model towards K different folds.
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In the setting of imbalance classes, it’s important to use stratified cross validation,
that ensures equal distribution of classes across folds.

For filtration, a stratified K-fold strategy was used with K equal to 5, meaning
that each time model was trained on 80% of data, while being validated on the rest
20%. After generating predictions for each sample using N different models, those
samples for which all the models made incorrect prediction were analyzed and fil-
tered out.

The logic behind the filtering was in the fact that different models would learn
distribution of data w.r.t target differently, but would make same mistakes for outli-
ers. [t’s worth mentioning that a probabilistic variation of an algorithm for filtration
exists. In probabilistic setting, those samples for which predicted probability distri-
bution of classes across all the models is not picked, but is whether close to uniform
are deleted, as such probability distribution implies that model is unconfident in its
predictions. It was empirically discovered that majority of analyzed samples were

mislabeled and had discrepancy between review text and rating (figure 3.4).

Review (Ukrainian) Review (English) Rating Expected
rating

Jyze perorengyo | Highly recommend ! 1 4-3

Biguipraminga ) ) ) Ha agmizo ! ! Excellent price ] ) Onsale ! ! 3 4-3

Axmeo EW noTpan®Te B Ue Miche | 0yae | If vou get to this place, be prepared for | 3 4-3

T& TOTOEL 30 Toro , mo gepes 13 xgmnmn | the fact that 13 minutes after crdering

H MOiCTA 33MOEIEHHA EaM NoJagyTe ane | you will be served an aperitif or a

PHTHE 300 EOETEHNE | i Boe Oyae cuag | cocktail, and everything will be

HO . ARINE i DogapyHEIE JyEe darato , | delicious. There are a lot of

TOMY ZENC EM He IOCIHIMAeTe , BHTYVT | promotions and gifts, zo if vou are not

! in a hurry, you are here!
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Figure 3.4 — Example of confusing samples with discrepancy between

reviews and rating
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It’s important to note that subjectivity of ratings naturally exists in terms of
ratings that are close to each other (1 star is pretty similar to 2 stars, whereas same
is true for 5 and 4 ones). Thus, only those samples for which the difference between
actual rating and predicted was bigger than two were filtered. As the result of filter-

ing, 7437 samples were removed from dataset.

3.4 Conclusion

To tackle the task described in the work, it was decided to gather a cross-
domain dataset of reviews from TripAdvisor and Rozetka websites. To accomplish
the task, data scrapping with advanced techniques, including user-argent rotation,
proxy servers and different time intervals was used. In result, the dataset including
671k reviews was collected. The analysis of data, revealed that bigger part of it con-
sisted of Russian reviews, which were then translated into Ukrainian. Due to errors
during translation including partial translations, missing spaces between words, and
questions in reviews section, specific processing of data was used, that resulted into
shrunk dataset of 662907 reviews. The rest of analysis influenced further decisions
made in the work. In order to filter out discrepant reviews, a machine-learning based

approach was applied.
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4 MODELING AND DEVELOPMENT OF KEY-PHRASES RETRIEVAL
ALGORITHM

As it was already mentioned, the proposed approach can be split into two dif-
ferent steps: modeling of ratings based on reviews textual information and applica-
tion of explainable artificial intelligence techniques for extraction of most influential
phrases w.r.t explicit ratings.

The logic behind the presented approach is the following: by learning to model
ratings based on reviews textual information, the model will also learn that some
words and phrases have strong influence towards specific rating score. Having a
model trained in aforementioned way, the one can perform reverse engineering in
order to get an importance weighting of words and phrases towards predicted rating
score or range of all possible scores. Such approach requires to store only trained
model and its tokenizer, as opposed to Bobenko’s approach, that needs to store
model and tables of positive and negative n-grams. It’s worth mentioning, that de-
veloped technology can be easily integrated into microservice architecture and be
used as an API. In this chapter, the process of reviews ratings modelling and key-
phrases retrieval is described, the analysis of quantitative results of both steps w.r.t

predefined metrics is conducted.

4.1 Modeling

The training procedure can be divided into two categories: classical machine
learning algorithms and deep-learning ones. As it was already mentioned, ratings are
pretty subjective, thus it was decided to conduct experiments both on the problem of
rating estimation and on sentiment prediction one. To convert task from rating esti-
mation to sentiment prediction, rating labels were mapped to sentiment ones using
the following rule: ratings equal to 2 and lower mapped to negative, rating of 3 to

neutral, and ratings higher than 3 to positive. For sentiment prediction, the experi-
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ments were conducted towards 5 deep-learning architectures that achieved best re-
sults on ratings estimation and two classical machine learning algorithms. The data
was split in a stratified manner w.r.t each domain dataset and ratings.

F1-score is a harmonic mean of precision and recall metrics, which gives a
possibility to get a class-wise performance rather than overall performance as done
by accuracy. Speaking of utilization of f1-score for multiclass setting, there are dif-
ferent ways to aggregate results. During micro averaging, true positives, false posi-
tives and false negatives are calculated for each class in order to calculate global f1-
score. Micro averaging doesn’t take information of imbalance into account. Other
method of averaging is weighted average. During weighted average, the f1-score is
calculated for each class and is weighted by support of corresponding class. Given
bigger weight to classes with bigger support, is preferable when classes with more
support are of bigger importance to us. However due to the fact that data used during
inference could have other distribution than training one and assuming that perfor-
mance of model w.r.t each class is equally important the other metric should be used.
During macro averaging, the average of f1-scores for each class is calculated, there-
fore providing information about model’s performance considering equal contribu-
tion of each class. Throughout experiments, f1-score with macro averaging was used
as the main metric. To choose between algorithms, averaged f1 macro w.r.t three
domains was used, as the main goal for modeling was to generalize to all domains.
The dataset was split into train, validation (10%) and test (10%) in a stratified man-
ner w.r.t rating scores and data domains.

Firstly, classical machine learning algorithms were trained. Experiments were
conducted towards logistic regression and gradient-boosted trees implementation of
xgboost library. Such algorithms were picked, as they can be directly utilized for
explainable Al. For instance, weight coefficients of logistic regression w.r.t each
input feature can be analyzed to gain sense of what feature is most influential w.r.t
specific class (bigger weight means bigger influence). Stop words were removed
from lemmatized tokens, which were then transformed into vectors using tf-idf (term

frequency — inverse document frequency) and used as input to models. To tackle the
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problem of imbalance classes, class weights were used. TF-IDF was applied along
with algorithm training by utilizing a scikit-learn pipeline.

As the runtime of classical machine learning algorithms is often lower than of
deep-learning ones due to fewer number of parameters, a Bayesian search over the
hyper-parameters was performed. Basically, hyper-parameters tuning is a process of
determining best hyper-parameters of the algorithm w.r.t specific metric. It’s also
called second level or black box optimization and assumes optimization of model’s
hyper-parameters prior to black box model performance. As some algorithms have
huge number of hyper-parameters, it’s favorable to do hyper-parameters search ef-
fectively. In comparison to grid search, which tries out all the possible combinations
of parameters, Bayesian search optimizes parameter selection in an iterative way.
There are five aspects of model based hyper-parameter optimization:

1. A domain of hyper-parameters over which the search will be done.

2. An objective function which takes hyper-parameters and returns a score,
that we want to optimize.

3. The surrogate model of the objective function.

4. A selection function that evaluates which hyper-parameters to choose next
from the surrogate model.

5. A history that includes mapping of hyper-parameters and corresponding
score, that are used by the algorithm to update the surrogate model.

During Bayesian search, the optimization was made w.r.t f1-macro on valida-
tion subset of data for both rating score estimation and sentiment analysis. As the
surrogate model, random forest regressor was used, with selection function equal to
expected improvement. While searching for hyper-parameters the one needs to set
range of values for domain over which the search will be done. For gradient boosted
trees the following hyper-parameters were tuned:

1. max_df parameter relevant to maximal frequency of tokens for TF-ID: (0.7,
0.95).

2. min_df parameter relevant to minimum frequency of tokens for TF-ID: (5,
50).
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3. ngrams on which TF-IDF operated: (1,2).

4. max_depth relevant to maximal depth of each tree: (3, 25).

5. gamma parameter controlling minimal loss reduction required to make fur-
ther partition on a leaf node of the tree: (1, 9).

6. alpha parameter relevant to L1 regularization term on weights: (40, 180).

7. lambda parameter relevant to L2 regularization term on weight: (0, 1).

8. colsample by tree is the subsample ratio of columns when constructing
each tree: (0.5, 1).

9. min_child_weight parameter relevant to minimum sum of instance weight:
(0,10).

10. n_estimators parameter relevant to maximal number of trees learned: (30,
300).

For logistic regression the following hyper-parameter were tuned:

1. max_df parameter relevant to maximal frequency of tokens for TF-I1D: (0.7,
0.95).

2. min_df parameter relevant to minimum frequency of tokens for TF-ID: (5,
50).

3. ngrams on which TF-IDF operated: (1,2).

What is more, it’s worth mentioning that logistic regression was trained in
one-versus-all setting for multiclass classification and with number of maximal iter-
ations equal to 4000.

As of deep-learning algorithms, the experiments were conducted w.r.t combi-
nation of different layers and mechanisms including attention, convolution and re-
currency. Considering the fact that real-world text has many typos and number of
words in vocabulary is huge, it was decided to use sub-word tokenization method
named BPE (byte-pair-coding). BPE tokenizer was trained with a min frequency of
words equal to 5, which resulted into more than 10 times decrease in a number of
tokens (30k). For all the experiments, embeddings with 300 dimensions were used.
Due to analysis of median number of tokens in a review, all the sequences of tokens
were padded to the length of 300.
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Early stopping is a regularization technique to avoid overfitting. It works by
tracking the results of selected criteria through training process and stopping training
when criteria isn’t positively updated for predefined number of steps. The technique
is extremely useful in cases, where mislabeled data exists. All the models were
trained for 20 epochs and early stopping strategy with a tolerance equal to 5 epochs
of training was utilized.

As the main technique for regularization the Dropout was applied. Adam op-
timizer with default parameters was used for models training. Some of the models
utilized embeddings from Word2Vec model, which were pretrained on the BPE to-
kenized dataset. Throughout the experiments, the same random seed was used to
ensure reproducibility. All the architectures were implemented using Tensorflow
and Keras frameworks. The following architectures were implemented and tried out:

Kim-CNN. The architecture proposed by Yoon Kim, which applies parallel
convolutional layers to embedding layer and concatenates their output before the
classification one (figure 4.1). The kernel size of convolution can be referred as
number of unigrams that are sequentially aggregated together. Max pooling along
with ReL.U activation is applied after which convolutional layer. Convolved and
max pooled representations of embeddings are then flattened and concatenated to-
gether. Before output layer the dropout is used. The following hyper-parameters
were used:

« Convolutional kernel size range — [3,4,5].

« Convolutional filters — 32,

« Max pooling pool size — 2.

« Final dropout probability — 0.5.

Kim-CNN with spatial dropout and more layers. In this experiment, the pre-
vious architecture was modified and made more complex. In particular, spatial drop-
out was applied after the embbeding layer; the kernel size range was extended to the
following values: 3,4,5,7,9; after each convolutional layer along with max pooling,

the dropout was used, in order to reduce overfitting; before classification layer, an
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additional fully-connected layer was utilized; finally, before the classification layer,

the dropout was applied.

wait
for
the
video —.
and
do —
n't “
rent T

nx k representation of Convolutional layer with Max-over-time Fully connected layer
sentenc th static and multiple filter widths and pooling with dropout and

non-static channels feature maps softmax output

Figure 4.1 — Architecture of Kim-CNN model

The following hyper-parameters were used:

« Spatial dropout probability - 0.1.

« Convolutional filters - 32.

« Max pooling pool size - 3.

. Convolutional kernel size range - [3,4,5,7,9].

« Probability of dropout applied after max pooling - 0.1.

. Dense layer neurons number — 512.

« Final dropout probability — 0.3.

LSTM-CNN. Right after the embeddings, LSTM (Long-short-term-memory)
layer was utilized. Processed sequences from LSTM were then convolved. This
combination would allow to nonlinearly aggregate processed information from the
LSTM. As in previous architecture, spatial dropout was utilized after the embed-
dings layer, same goes for fully-connected layer before classification one. The fol-
lowing hyper-parameters were used:

« Spatial dropout probability - 0.3.

« Convolutional filters - 32.

« Convolutional kernel size - 3.
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Max pooling pool size - 2.
LSTM neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5.

CNN-LSTM. Right after the embeddings, convolution is applied similarly to

Kim- CNN architecture. In this setting, LSTM works with already aggregated infor-

mation of n-grams through the usage of CNN and max pooling. The following hy-

per-parameters were used:

Spatial dropout probability - 0.3.
Convolutional filters - 100.
Convolutional kernel size - 3.

Max pooling pool size - 2.

LSTM neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5

LSTM-Attention. Attention is applied after the LSTM to aggregate processed

representations of words. A dot product attention was used with tanh nonlinearity.

Before the classification layer attention output was concatenated with the last state

of the LSTM. As it was already mentioned, attention can be used to locally explain

model’s decision to some degree by analyzing importance weights assigned to each

processed word from LSTM. The following hyperparameters were used:

« Attention layer neurons number - 128.

Spatial dropout probability — 0.3.
LSTM neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5

Bi-LSTM. Instead of applying the LSTM after embeddings, a bidirectional

version of it is utilized. It allows to access text both from right to left and left to right

allowing for richer representation of text. The following hyperparameters were used:

« Spatial dropout probability — 0.3.
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o BIi-LSTM neurons number — 128.

« Dense layer neurons number — 128.

« Final dropout probability — 0.5

Bi-LSTM CNN2D. Architecture proposed by Zhang et. al, which is based on
utilization of bidirectional LSTM and processing its outputs using two dimensional
CNN (figure 4.2). The following hyperparameters were used:

« Spatial dropout probability — 0.3.

« Bi-LSTM neurons number — 300.

« Dropout after LSTM probability — 0.2.

« Convolutional filters — 100.

« Convolutional kernel size — (3,3).

« Max pooling strides — (2,2).

« Max pooling pool size — (2,2).

Two-dimensional | Two-dimensional | Output
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Figure 4.2 — Bi-LSTM with two-dimensional convolutional layer and max pooling

Deep LSTM. Instead of applying one LSTM after embeddings, two LSTMs
were stacked. By applying multiple LSTMs on top of each other it is possible to

learn richer representations of text. Between LSTMs the dropout was utilized along
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with batch normalization. Batch normalization was applied to channel axis. The fol-

lowing hyper-parameters were used:

Spatial dropout probability — 0.3.

LSTM first level neurons number — 256.
LSTM first level recurrent dropout — 0.1.
LSTM second level neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5.

Deep Bi-LSTM. Same logic as for deep LSTM, but with substitution of first

level LSTM layer by a bidirectional one.

Spatial dropout probability — 0.3.

Bi-LSTM first level neurons number — 256.
LSTM second level neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5.

Deep LSTM Attention. Similar to the deep LSTM, but with usage of attention

for aggregation of all output states of the second level LSTM. The following hyper-

parameters were used:

Attention layer neurons number - 128.
Spatial dropout probability — 0.3.

LSTM first-level neurons number — 256.
LSTM first level recurrent dropout — 0.1.
LSTM second level neurons number — 128.
Dense layer neurons number — 128.

Final dropout probability — 0.5.

Deep LSTM Attention with Word2Vec embbedings. Same architecture as be-

fore, but instead of training embeddings from scratch, the pretrained ones were fine-

tuned. The hyper-parameters are the same as for deep LSTM Attention.
CNN Deep LSTM Attention with Word2Vec embbedings. A forge of two ar-
chitectures, in particular Kim-CNN with more layers and Deep LSTM attention.
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Firstly, parallel convolutions for defined kernel sizes were applied, the concatenated
result was then passed to LSTM layers and attention. Word2Vec embbedings were
utilized as in previous architecture. The following hyper-parameters were used:

. Attention layer neurons number - 128.

« Spatial dropout probability — 0.3.

o LSTM first-level neurons number — 256.

« LSTM first level recurrent dropout — 0.1.

« LSTM second level neurons number — 128.

« Dense layer neurons number — 128.

« Final dropout probability — 0.5.

« Convolutional filters - 32.

« Max pooling pool size - 3.

« Convolutional kernel size range - [3,4,5,7,9].

« Probability of dropout applied after max pooling - 0.1.

« Dense layer neurons number — 512.

« Final dropout probability — 0.1.

Deep LSTM Attention with Word2Vec embeddings and class weights. Same
as deep LSTM attention with Word2Vec embeddings, but class weights were ap-
plied to tackle the problem of class imbalance. Class weights were simply computed
by scikit-learn library. The hyper-parameters are the same as for deep LSTM Atten-
tion.

Variations of Deep LSTM Attention with Word2Vec embeddings w.r.t noise-
tolerant objectives. Even after automatic data filtration process, biased samples still
persisted in the data. Thus, it was decided to try out noise-tolerant training, specifi-
cally techniques relevant to altering the objective of a model. First experiment was
related to technique named label smoothing [43]. Label smoothing is a regularization
technique, that accounts for the fact that dataset could have incorrect labels, so that
maximizing the likelihood of cross-entropy function could hurt the model (formula
3).

CE = =X, p; *log (p) (3)
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In case of cross-entropy loss applied to the training of the model, p; is substi-
tuted by true class identifier (whether 0 or 1), while term log (p;) is transformed into

logarithm of predicted probability for the class (formula 4).

CEjpss = — M-, Y true; x log (y pred;) (4)

Logically, when predicted probability for true class is close to zero overall
term is increasing. Same logic works in the other direction and the goal of optimiza-
tion is to find minimum of cross-entropy function prior to model’s parameters. Nev-
ertheless, for most cases cross-entropy works well, it could hurt model performance
in the case of mislabeled data. Such behavior comes from the fact that cross-entropy
mostly tries to push probabilities for true classes to 1. However, such behavior is not
always needed. In fact, for correct classification, the probability of true class being
the biggest among others is enough. Label smoothing regularizes the model by con-
verting hard labels into the soft ones, which helps to deal with overconfident predic-

tions and improve generalization (formula 5).

y truels = ytrue; * (1 —a) + a/K (5)

The mathematical procedure described in formula 4 transforms hard targets
into soft ones by utilizing alpha parameter, called label smoothing factor. Setting
label smoothing factor to O would result in original hard labels, while label smooth-
ing factor of 1 would result in uniform distribution. It was shown that label smooth-
ing calibrates learned models, so that the confidence of their predictions are more
aligned with accuracies. In our experiments we applied label smoothing with label
smoothing factor equal to 0.1. While label smoothing alters targets for cross-entropy
objective, there are approaches which utilize noise-robust objectives such as log

cosh and Huber loss.
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Log cosh loss is less sensitive to outliers and is simply computed as applying
cosh and logarithm to difference between predicted and real vector. Log cosh loss

can be viewed as a smoothed out L1 using L2 around origin (formula 6).

L = log (cosh(x)) (6)

Huber loss combines L1 and L2 losses by explicitly using L2 in the vicinity
of the origin where the discontinuity lies, and then switching to L1 a certain distance,
delta, away from the origin. Both losses are primarily used for robust regression, but
can also be adopted to classification problems, by simply computing the difference
between predictions probabilities vector and one-hot vector of target classes. In our

experiments, we used Huber loss with a delta of 1 (formula 7).

Eaz if la| <6
Ls(a) = 1 (7)
0" (|a| —56) else

The results of modeling on ratings prediction problem are presented in Table

4.1, whereas on problem of sentiment analysis — in Table 4.2,

Table 4.1 — Results on a problem of modeling ratings scores

Testfl Test f1 Test f1 Test f1 Testfl  Averaged

Approach Rozetka TripAdvisor  TripAdvisor translated original flonall

hotels restaurants data data domains
logistic_regression 0.378 0.339 0.367 - - 0.361
gradient boosted trees 0.26 0.256 0.262 - - 0.259
Istm_attention 0.474 0.555 0.563 0.530 0.483 0.531
Istm_cnn 0.482 0.550 0.546 0.526 0.479 0.526
bilstm_cnn2d 0.497 0.556 0.549 0.534 0.496 0.534
bilstm 0.483 0.532 0.54 0.521 0.480 0.518
cnn_deep_Istm_attention_w2v 0.504 0.549 0.546 0.533 0.514 0.533
cnn_lstm 0.51 0.528 0.541 0.528 0.518 0.526
deep_bilstm 0.492 0.536 0.548 0.527 0.502 0.525

deep_lIstm 0.491 0.548 0.554 0.532 0.494 0.531
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Continuation of Table 4.1

deep_lstm_attention 0.498 0.553 0.557 0.538 0.496 0.536
deep_lstm_attention_w2v 0.516 0.568 0.572 0.552 0.523 0.5521
deep_lstm_attention_w2v_class_weights 0.493 0.562 0.584 0.546 0.497 0.546
deep_lIstm_attention_w2v_huber 0.511 0.574 0.572 0.553 0.511 0.5526
deep_lIstm_attention_w2v_label_smoothing  0.498 0.566 0.564 0.543 0.501 0.543
deep_lstm_attention_w2v_log_cosh 0.5 0.57 0.571 0.547 0.505 0.547
kim_cnn 0.517 0.510 0.534 0.528 0.516 0.520
kim_cnn_more_layers_spatial_drop 0.513 0.532 0.546 0.535 0.514 0.530

Table 4.2 — Results on a problem of sentiment analysis

Testfl Test f1 Test f1 Test f1 Testfl  Averaged
Approach Rozetka TripAdvisor  TripAdvisor translated original  f1 onall
hotels restaurants data data domains
logistic_regression 0.562 0.497 0.546 - - 0.535
gradient boosted trees 0.422 0.39 0.428 - - 0.413
bilstm_cnn2d 0.685 0.699 0.732 0.709 0.689 0.705
deep_Istm_attention_w2v 0.691 0.712 0.728 0.712 0.698 0.71
deep_Istm_attention_w2v_class_weights 0.676 0.7 0.738 0.709 0.673 0.705
deep_Istm_attention_w2v_huber 0.691 0.721 0.745 0.721 0.695 0.719
kim_cnn_more_layers_spatial_drop 0.657 0.709 0.734 0.705 0.650 0.7

As it can be seen from results depicted in Table 1, deep_Istm_attention-
w2v_huber achieves best results in terms of test f1 for TripAdvisor hotels domain
and averaged f1 on all domains. Analyzing the confusion matrix (appendix B.5) of
best approach on rating estimation, it’s easy to notice that most of the errors are
relevant to mismatching close categories, that are subjective by nature. This in par-
ticular, implies that trained model is representable of data distribution and can be
used for further experiments relevant to key phrases retrieval. Interestingly, the ef-
fect of noise-robust objective isn’t very noticeable in rating estimation experiment.
In fact, the difference between average f1 on all domains between Deep LSTM At-
tention Word2Vec embeddings with cross- entropy and with Huber loss is only
0.0005 points, whereas the gap is much bigger for the task of sentiment analysis
(+0.09). The huge influence of pretrained embeddings for sub-words is observed, in

particular fine-tuning of pretrained Word2Vec embeddings for Deep LSTM with
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Attention leads to increase in metrics for all domains and results in increase for av-
eraged f1 on reviews estimation problem (+0.161). Such result is possibly influenced
by the fact that by pretraining Word2Vec embeddings on the task of language mod-
elling, resulting learned vectors better capture the overall structure of language and
meaning of words. Speaking about Attention, it’s seen that usage of it resulted into
better f1 across all domains and averaged one (if to compare Deep LSTM Attention
with Deep LSTM, the gap w.r.t averaged f1 is +0.005). Such behavior is explained
by the fact, that Attention mechanism learns to weight tokens in the sentence by their
significance to correct output results. In the case of sentiment analysis and reviews
estimation, Attention mechanism could learn that hidden state of positive and nega-
tive tokens are the most important (the unraveled results of Attention weighting are
presented in next chapter). If to compare worst results of deep learning approach
with best one of machine learning one, the increase in f1 score is 0.159. The gap
between deep learning-based approaches and machine learning ones suggests that
order of words and learning of their context are of big matter for both review esti-
mate and sentiment analysis problems. It’s worth mentioning that results of models
could be improved by using automatic hyper-parameters optimization and manual
data filtering. The exact configurations of models in terms of their architectures and

hyper-parameters are available on GitHub.

4.2 Algorithm for key phrases retrieval

After training the models, the best one w.r.t chosen metric was picked for ex-
plainability experiments and construction of an algorithm for key phrases retrieval.
The algorithm works on both on the level of entity (restaurant/hotel/product) and on
the level of its review. While working on the level of entity, specific averaging is
used to summarize most influential phrases across all the reviews for the entity. The
algorithm for key- phrases retrieval can be logically divided into two steps: retrieval
of predictions and scores for each token in each review and aggregation of scores

across all the predictions.
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Retrieval of scores is the main subject of the experiments. In particular, the
experiments were conducted towards two methods: LIME and Attention. As the
trained model operated on BPE tokens, which are essentially sub-words, the opera-
tion of sub-words merging was implemented. For merged sub-words, corresponding
attention scores were summed-up. Main disadvantage of straightforward attention
explanation is that its feature scoring gives explanation that is interpreted towards
the class with highest probability, although certain features can contribute to increas-
ing of probabilities of other classes. On the other hand, LIME provides explanation
that captures contribution of features towards each class. Speaking of LIME, the
main disadvantage that we found was disability of using custom tokenizer, which is
essential for Ukrainian language. Also, while Attention is an in-built mechanism of
model explainability, LIME uses local surrogate models to interpret predictions,
which could be not strong enough to understand the data and approximate predic-
tions of much more complex model.

Having obtained the scores for each token and actual predictions for each re-
view, the aggregation of results was done. The aggregation step works for phrases
of varying size, supports aggregations relevant to sum and mean and has a function-
ality for diversification of results based on input tokens. For n-grams other than uni-
grams, the scores are summed up or averaged, depending on aggregation algorithm’s
settings. It’s worth mentioning that aggregation algorithm is agnostic towards the
method used for scoring tokens and is pretty simple in nature, which makes it easier
to extend and enhance.

The full pipeline of extraction for key phrases extraction and reviews summa-
rization works in the following way:

1. Process the data in the same way, that was used to process the data for
training the models (add spaces between punctuations, remove next-line character,
etc.).

2. Tokenize the data using trained BPE tokenizer.

3. Make predictions and explanations based on trained model using LIME or

Attention for each review/text.
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4. Summarize results using aggregation algorithm.

The aggregation algorithm included logic relevant to generation of scores for
n-grams, removal of too similar n-grams and aggregation of results for each possible
rating. While creating n-grams, the scores for words forming the n-grams are aver-
aged together. Results are then either summed up or averaged for same n-grams for
same labels. It’s rather important to use removal of similar n-grams to get better
diversification of results. Diversification is done by grouping similar n-grams w.r.t
intersection of subphrases on the level of each possible rating. After grouping pro-
cedure, only one n-gram in group which has the highest importance score is left. It
was empirically found out, that model tended to pay much attention to punctuation
relevant to end of sentence. In order to get rid of such bias two options were incor-
porated:

1. Split paragraph into sentences and finding n-grams inside each sentence
separately. This option provided a tolerance towards n-grams with high score con-
sisting of multiple words from different sentences. Despite, the overall score of such
n-grams could be pretty high, their construction violates explicit text structure and
thus isn’t comprehensive.

2. Filtration of punctuation characters while computing n-grams. Although
some punctuation characters like exclamation mark or smiles could provide some
information inside key-phrases, it was decided to not include them because of intrin-
sic bias of attention mechanism towards them.

The list of aggregation algorithm’s hyper-parameters along with short descrip-
tion for each of them is depicted below:

« n_gram_list — list of n-grams for which generation should be done.

. func_agg _n _gram — function to aggregate scores for n-grams based uni-
grams, either “mean” or “sum”.

« func_agg_overall — function to aggregate scores for same n-grams, either
“mean” or “sum”.

. diversify — diversification power related to number of tokens to use for du-

plicates filtering, integer is expected as input. Zero value is relevant to no filtration.
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. to_tokenize sentences — whether to tokenize paragraphs into sentences be-
fore getting n-grams.

. to_tokenize by punct — whether to additionally tokenize sentences based
on punctuation.

« to_del punct —whether to delete punctuation.

« top_n—top results to return back for each rating.

« min_thr — minimal value of score for returning the phrase.

It’s worth mentioning that during comparison of methods in terms of key-
phrases retrieval ability, both options were disabled, as they had no impact on com-
parison.

The experiments to decide which method is more suitable for key-phrases re-
trieval were conducted. During experiments the aggregation method’s parameters
were the following: n-gram was set to be equal to 4, both aggregation for phrase
scores and overall scores were set to mean, diversification was used with overlap of
2 words, for LIME method top-15 phrases per label were retrieved, whereas for At-
tention — top-20. The experiments were made towards best model trained for rating
estimation. For experiments, a new dataset of diverse entities in terms of their aver-
age rating across three domains was constructed. To compare results of LIME and
Attention explanation, precision at K metric was used. To retrieve information about
global performance of phrases retrieval for specific entity, average precision at K

was used:

Average Precision at K = %Z %, (8)

where D - number of reviews for specific entity, K- overall number of phrases, K,
— number of relevant phrases.

Precision at K can be used in two setups:

1. With labeled data, in which relevant phrases for each entity are labeled.
This setup gives an opportunity to automatically compute the metric.

2. With human evaluation, when results of algorithm are checked by human

in terms of their relevance.
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To evaluate algorithm proposed in current work, the second approach was ap-
plied. The phrase (n-gram) was assumed relevant if it was clear and reflective of
predicted category (figure 4.3).

Entity name : Dnipro Hotel, average rating : 2.86

Most influential phrases for rating of 1.0
Lime resulls: axnuBHR roTens He BIAPECTABPOBANUIA', CKOPUCTATHCA CEPHOIHIM PEMONTOM KiHaTW',
'MeTPM HaniB3pyiAHOBaHI NPOCTUPAANE NOXOBKAI

‘IMHaTV )axnvi fi [, oA 8 ruaoTi i, ‘Binryku ane e roTens',

'ny’xe noraHi ckpisb €, I,
Mi0nM Ha cTiful peccTpaur, OKOBKAIBINACYNGTOALY . SAHOPASOSINATONKAMGIAION
i Mw xoTinK 3pobuTK', ‘AaroTe cTapi eikka 3, '8 rateni no apyre’

Attention results - — _ ‘noxoakni aig uacy .
I(aXHMBMM Ino -, %axnmei , Ak i',

'soepeanHi ru'remo BA)KBHU’!bMeHCbKUIW. "3MIHIDETBCA . NAAHO ',
', 'Ay>e norai , CKpias',
'roTenio CTaBMBCA A0 rocTed, ninTeepaxeroro B BpoHosanHi wifi',
‘DENGHTCIMKINHSTANRERANE!, 2 meTpy , HaniBspyiHoBaHT,
'6pyaH , WO MuMoEoNT', 'TRilMHaMK ( 4yTw Bci', 'Ha caiTi | ninTeepmxexoro’, TiNOEONINOANECIISRETN

Most influential phrases for rating of 2.0:

Lime results: 'Hix npuiimatv ayxe norana', 'wika ayxe H13bKa Le', 'norana yroaa nini6 emo', 'meHi okpemuil acnipuH Konw',
‘ruaoTi i uBini NocTinLHa', ‘Nerwe Hix BYIMYHMA WyM', ‘| MK XOTinK 3pobrTH', WOBTOIO BaHHOI | HepobounM',

|, 'oco6nueo rapHi rpAaky ayxe’, TEHOD0SRMBICSANAUNECAIMBRIIAN . '0isHWA PAAAHCLKUA COI0S TaKe',
"WyM | yHMKaATe oaHOMIGHMX', 'S 1 NoBepX KiMHaTa', 'ane Ha xanb ayme'

results : p i . rpAOKW , 'Ga)KaTh KpaLoro B PafAHCHKIN', 'cepBicy | MyKe HeBUXoBaHI'
KOpCTKi | i, i . TOMY HE',

'BPYKENOBHICTb NEPCOHANY 3anMuIAE BaxaTy .
‘A06POTA . POIYMHTLCA NPOTH', 'BIACYTHA Ha C6AN44AX NBRCOHANY ', '18PEBO CNOBOM cnpaa»(nm rynar',

38epTaMTeCA 33 AONOMOICI0 ' "norawa yroaa . nigi6'emo”,
Dannncmw mopi . po:u(uunm

'0CO6/MBO NOCMiLUKA nopme i _‘, nocTinbKa Ginuaua i nepesa’,

'rynar mae OBEpUMA . icTh'

Most influential phrases for rating of 3.0:

Lime results: ' ‘-lalJlBNICfb AjiACHO cTapuit BTOMNEHWIA', 'ane NpawioioTb BOHW Ag', ‘yuouepi € Bee’, ‘micue POSTAILlYBaAHHRA iHe',
i', '6yna nyxe nobpe sHoweHa', '‘Tak cobi piBHMA PaaRHCHLKMIA', 'ep | NMTKA BaHHOI',
AHinpa poauulymm roTenio 4yaose', '3 8 ro nosepxy', TOTENk ANA HOPMANBHORO CAOXKNBAYA', 'HOMEPOM Ha CTIALI peecTpauil, 'MaloTs llymuln Bu1A Ha'

Attention results : TjSKSIOMEPAIONSINOKPIABERD ', ‘TyaneTHWA nanip Gye noabasneHwi, 'oxaiiHi . HalicTpawniwe ', TjEGPEMHENPHENHEIOXOPONE
‘nos6asneniit ) . eauHe, _ HEPOGOHIHN GIE - SANMIIABCA , 'ocoGnie0 rapki rpAQKY ., BRI KOBPONHI KOWMADHE
', NEPCOHAN HANONAras ,' 'Hiabka , Le Kpauwe', '3acTapiny 3 80 ¢!, . WiHA AY3KE HIW3BKE', '3MIHUNOCA 3 YaciB PAfAHCLKOT,
[, 'BanHoi KiMHaTK QyXxe 3acTapinu', ‘Tenesizop , KOHAWLOHep I,

‘KOlNEpHEIBARNANKIMABTEN . 'CopentiM . He 3aNVLVBCA', '30BCIM He rapHe Baye’

Most influential phrases for rating of 4.0:

Lime results: '12 00 BapTicTb CTAHOBUT, ' ii TWBHI', 'BaHHI KIMHaTH 6a30BWiA ane',
'MOCTYNHWIA TiNkKK ANA u.nanis'. wmeTi WenaKe ', "AMBHO Lie NPOCTO XOPOWWA',
‘cTaHoBKTL 120 rpH maiTe!, '6yNo XONOAHE IMCTONaA XopoWWi', 'NPOCTOPoIO aNne NXKKO TPoXW', ‘A0 peuenuil AoCHTL TeMHMIA',
Illrlouy cepaic Xopowwui rpumun 'my>ke xopowi ane uei', TRUBHI cBOIN

‘micAu 3a 1 eBpo’, Y 2 3i

Attention results 'rapAYMM WBEACEKAM CTONOM 3', xamymcmuww rotens . Wwose4opa', '. EHIAAHOK GyB rapAYMM',
'6a3oBWi , ane Bee', . . . 6a30BWIA|, MACTKOBO AyXe BENWKI i, 'NeKop AOCHTL AaTOBaHI ', 'A HATPaNWB Ha Taki',
'UBEACEKOMY CTONI . Kopmml "McTo | BiOMiHHO cHinae', upﬂuﬂwnillnmm

'ocu'meuuﬁ mnlpulmn‘ﬂ 'HenpmmHoch AKGK A', 'GHeTi nﬁcnylulymnn WBKAKE', 'TEMHWIA | NOraHo OCBITNEHMWIA',
', 'TOUHO A0CTABME 61 Henpl | 'onHOMY 3 B TOBAHNX NOBEPXig',
‘wose4opa , Konn Mu', \Mcﬂinymspyqul

Most influential phrases for rating of 5.0:

Lime results: ‘ipekpacHnii posKilwHwil roTens &', 'Ue BapTe CBOIX rpoweid’, 'Gyno oyxe NpHeEMHIM y',

'8 ecTopasi Ha 12', 'BM MOXETe NIT 1a', 3aceneiki w 0608 AIKOBD', BUTbLLE 2 TIXHIB LE', 'HAC GIarocnoBeKHM 4ac B!
‘uboMy roteni i A', Nmmlu,qumn cHipae', BOAYHI & 'Heaaby O MOXE',

‘rofTo coH Tomy Bei', ‘A npocTe nibnio wei', npoTikae yepea asepl u.Le

results: .a', 'cepsic : 8 !uncToTa Xopowa',
'ceoix rpowed ! I, 'woniHry 6ainyxumu . 8', 'Uei rotens | NpUBiTHWA', ‘NPUEMHIWA NEPCOHAN , CMaYHa',
'aBTOMaTH30BaHI BIONOBIA , 6ys‘ ‘e Kinbka roMH abepiranv’, ‘36epirany Haw barax 8',
‘nolapnaxi KimHaTti (Ayn(e , YMCTI HOMEPK .', ' A B HACTIAHO', "YMCTIUM i wmbwm
'am(umyru ©BOI rpolwi Ha', pemwauamnmpmmromeﬂm‘ 'xopotwa ! wi -, “renealsap 6yB Tpy64acTim ',
'He poBuTh is woniury', xeio )

Figure 4.3 - Example of LIME and Attention explanation for one of the entities. In
green — positive phrases are shown, in red — negative. For ratings <3 only negative
phrases are relevant, for >4 — only positive, for 3 — both negative and positive. Re-
sults were validated towards summarization of all reviews w.r.t specific entity and

categorized by averaged rating groups (<3, 3 and >=4).
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As it can be seen from Table 4.3, Attention method achieves better Precision
at K averaged on all rating groups, which was used as main metric. It’s worth men-
tioning that LIME has better coverage in terms of number of phrases, thus it’s rec-
ommended to use the combination of methods while retrieving key phrases. The
algorithm for phrases retrieval can easily be enhanced based on POS tags, which
could help to obtain only those phrases which suit specific patterns (e.g. Noun-Ad-

jective, Adjective-Noun-Verb, etc.).

Table 4.3 — Results on problem of key-phrases retrieval

Precision at K Precision at K  Precision at K for ~ Average

Approach  for average for average average rating Precision
rating <3 rating 3 >=4 atK

LIME 0.2806 0.3292 0.221 0.276

Attention 0.308 0.3009 0.266 0.291

Even though the algorithm is constructed to work with pull of reviews w.r.t
specific entity (restaurant, hotel, product), it’s much easier to make qualitive com-
parison and analysis by utilizing of key-phrases retrieval for one review. In this sce-
nario, both methods were tried out on reviews from each domain which were unseen
by model during training. It’s worth mentioning, that the application of methods to
one sample of reviews instead of bunch of them results in decrease in performance
for key-phrases retrieval thus implying more thorough hyperparameters selection for
aggregation stage. The results of such retrieval for Attention mechanism are de-
picted on figure 4.4, while for LIME on figure 4.5.

If to compare results of algorithms inference on one review, which are de-
picted on aforementioned figures, it’s pretty clear that for one review LIME provides
better categorization of key-phrases which can be useful in terms of ABSA (Aspect-
Based-Sentiment-Analysis). Attention at the same time provides general infor-
mation of most influential key-phrases towards the predicted label. As it was already
mentioned, the described method for aggregation has number of hyper-parameters

that should be tweaked w.r.t specific use-case. It was empirically found that number
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of n-grams should be increased for longer reviews, as it’s more probable that such

texts contain more complicated language structures.

Hotel example:

00000
Moginna

Hemuoxeuko COBOK, 3aTO LIEHTPanbHEeHbLKO.

Mpuemnembie ueHbl. MOXHO pa3ok OCTaHOBUTLCS. He oueHb ganeko Ao
(hOHTaHOB.

Ecnu He cobnpaerecs NPOBOANTL MHOTO BPEMEHM B OTENMW - NPEKPacHoe MecTo,
4106 CIKOHOMUTL AEHBMM W NOTPATUTL UX Ha OTABIX.

Key phrases retrieval result : {4.0: [('mo ¢oHTanie', ©.056869168765842915), ('3arTe ueHTpaneH
eHbKo', 0.04467093339189887), ('npuiHATHL uinm', ©.033335219137370586), ('rpowi Tta', 0.033203
81511002779), ('36bupaeTecs nposoauTu', 0.028232471086084843), ('BuTpatuti ix', 0.025015458930
283785), ('Ttpoxu cosok', ©.018729317933321), ('nyxe paneko', 0.017526264069601893), ( '6arato

yacy', 0.013295491691678762), ('skuwo He', 0.011782747111283243)]}

Restaurant example:

@ OOOO Orawe Hanucan 29 asrycra 2017 ¢ [J 4epes MobunsHoe ye1podcTao

Nany C apyssmn

OvueHs mobnio aTo 3aseaeHune, HO BCE Yalle NPUXOAA CIO[a HaCTPOeHHe NOPTUTCA 13-3a
yxacxoro obcnyxusanna .OuumManTsl BeayT cebs No XaMekn OlLYWEeHNe YTO S He3BaHbI
rocTb y Hux aoma !!! ObrumanTra Onbra NPocTo Xxects .MeHI0 NepeHocsT yepes 15-20
MUHYT! He 3HaI0T 4TO Y HUX €CTb, CTONLI He yBupator!!!

Yeaxaembie Bnafenbubli KOHTPONMPYATE CBOW NEpCoHan unu samexute ero ! .

Key phrases retrieval result : {1.0: [('xaxnuse obcnyrosysanua', 0.06144743971526623), ('meno
nepesocsaTe', 0.044933429919183254), ('uepe3 xaxnuse obcnyrosysamus', 0.041105373529717326),
('nepenocaTe yepes', 0.0375080636003986), ('waHoBHi BnacHuku', 0.035371857695281506), ('He 3H
anTL', 0.030217465478926897), ('Henpoxawuh ricte', 0.02997622883412987), ('3HawTts wo', 0.0270
4019215889275), ('npocto xepcth', 0.026074229273945093), ('s Henpoxawun', 0.02522684016730636
4), ('opiuiavtv nosopaTbca', 0.02448773104697466), ('snacHuku KoHTponwute', 0.024465691763907
67), (‘onbra npocto xepcte', 0.023474916505316894), ('abo 3aminiTe', 0.022104573203250766),
(*nosopAaTbCA No xaMmcbkomy', ©.022070959210395813)]}

Product example:

Rhrdrdr

Hocuts xopoww# Tenesisop, 3a caoi rpowi. bpas, nokv B HassrHocTi He Gyno QLED, we He nponasanvcs 8 Hac.
FapHa MaTprus, QIACHO 4K KPYTO BWTNAKAE.

Yncrnin in. Mnedt mapxer np , ane He BCi [OAATKM BOCTYNHI ANA NNaThopMm AeBaRACy.

38YK TEX QOCTOHHHMA, MYYHICT OK. LLIMPOKH# CREKTP HanawTysaHs,

FAPHO CUHXPONISYE 3 TEN, & TAKOX AKKAYHTOM.

3 HenoniKis, WO HE QYXE 3PYHHO, L HOXKM, IX BUKOHaHHA Ta BIACTaHL MiX HuMK. He Ha KoXHY nosepxHio niginae. Takox He
BRANOCA 3aNyCTUTH FONOCOBHH NOWYK, Ha NyNbTI

3aranom, BUSOPOC 3a00BONEHHA

Key phrases retrieval result : {4.0: [('ronocoewit nowyk Ha nynbTi', 0.04428453848231584), ('s
ci popatku poctynHi pns', 0.023990841815248132), ('3BYK Tex AOCTOMHMA ryyHicTb', 0.0139572148
9097923), ('takox He Bpanocs 3anyctutu', 0.013202932954300195), ('myxe 3py4HO ue HOxku', 0.01
0255894128931686), ('nnei Mapket npauwe ane', 0.004444126796443015), ('pincHo 4k KpyTOo BUrNsg
ae', 0.0032463649986311793), ('pmocutb xopowwit Tenesisop 3a', 0.002903803309891373)]}

Figure 4.4 — Results of applying Attention-based key-phrases retrieval
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Hotel example:

00000
Moainns

Hemuoxeyko COBOK, 3aTO LeHTpanbHeHbKO.

Mpuemnemble ueHbl. MOXHO pa3ok OCTaHOBUTLCS. He o4eHb aaneko Ao
(hoHTaHOB.

Ecnu He coGupaerecs NPOBOANTL MHOMO BPEMEHU B OTENU - NPeKpacHoe MecTo,
4T06 CIKOHOMUTL AEHLIW M NOTPATUTL UX HA OTALIX.

Key phrases retrieval result :

5.08: [(‘npuinsTHi uisn', 0.03638715237521339), ('uynose micue', 0.816164822273017673), ('nyxe
panexo', 0.01479356153142479), ('rpowi va', 0.007287792589865722), ('36upaerecs nposoautu',
0.805611559097766156), ('na sinnoumHox', 0.005595461816870104), ('vacy 8', 0.0020622804854654
54)1

4.0: [("npuitHATHL yinn', ©.10826291958449524), ('rtpoxu cosox', 0.04133024733240093), ('ayxe na
nexo', ©.025599348045739184), ('uypose micue', 8.019669584703545153), ('ix wa', 0.81116995624
63519), ('ne 36upaetecs', 0.006782456779058981), ('moxna pas', ©.0025734053980415762), ('Gara
70 yacy', 0.0015304405728870304)]

3.0:[('rpoxu cosok', 8.09160484482800949), ('3are uexTpanbHenbko', ©.033737131463451496), ('n
o ¢oHTanis', 0.031247020017061884), ('moxHa pa3', 0.022853114084132653), ('saowanutw rpowi’,
0.022411505839914563), ('sutpatutv ix', 0.819032222112231118), ('sxwo He', 0.8153881858093543
04), ('synuuuTnca We', 0.009284065827133113), ('6Garato vacy', 0.086795296870876809)]
2.0:[('cosok 3are', 8.06507481700333678), ('3aomanntu rpowi’', 0.029811743083811185), (‘'surpar
Wtk ix', 0.812971767596407387), ('po ¢ontanis', 0.0871592460450936885), ('36upactecs nposBoauT
u', 0.0037397265494417973), ('vacy s', 0.003588230092472755), ('sxuo we', 0.00339687867407513
07), ('wa signouwHox', 0.002055979409509026))

1.0: [('cosok 3are', 8.02256656515934987), ('saomanntu rpowi', 0.014814608464134632), ('He 36u
paetecs', 0.807711536858159892), ('ra surpaturtu’, 0.006851889136920355), ('panexo po', 0.0042
39986529142976), ('vacy s', 0.001607611946888797), ('Ma sipnoumMok', 0.0014626155375959027)]

Restaurant example:

Q@ OOOO Oraws Hanucan 29 aarycra 2017 1 [J 4epes moGunsHoe yeTpoRcTao
Nany C gpyssamn

OvueHb MoGNIO 3TO 3aBegeHNe, HO BCE Yalle NPUXOAA CIORa HacTPoeHUe NOPTUTCA U3-3a
yxacHoro obcnyxusanna .OduUNaHTLl BeayT cebs No XaMCKW OLLYLLEHNE YTO 5 HE3BAHLIR
rocTh y HUX aoma !!! OuumranTka Onbra NPOCTo XecTs .MeHio nepeHocsT yepes 15-20
MUHYT! He 3HAI0T YTO ¥ HUX ECTb, CTONbI He yGuparor!!!

Yeaxaembie Bnafenblbi KOHTPONVPYIATE CBOW NEPCoHan v 3amexuTe ero ! .

Key phrases retrieval result :

5.0: [('nyxe mobno uei', .0063435939964503925), ('wHenpoxanwit ricre y', 0.802019444456499762),
('snawore wo y', 9.000827369258968581), ('wacrime npmxopaun cogu', 0.0006000830717898616), ('s
noma oiuianTka onera’, 0.0002968728684243272)]

4.0:[('nyxe mobmo uei', ©.0020532040878313001), ('ane sce wacriwe', 9.001033985257484816), ('2
@® xewnmk He', ©.00@5188497475658137), (’swawrs wo y', ©.0003694682874969838), ('nux spoma odi
ulanTka', ©.00022469827776420105)]

3.0:[('ane sce vactiwe', @.007315238147370773), ('pywe mobno ueid', 0.005940299849413014), ('o
6cnyrosyaanka odiuianTu nosopsTeca', 0.08036453681087332893), ('cronu we npubupants', 0.002236
571497300537), ('odiuiantka onsra npocro', ©.0820309860421389987)]

2.8:[('ane sce vactiwe', @.93833179535131779), ('saxnuee obcnyroeysawHs ofiuiawtn', 0.8286784
19537759584), ('nebnio ue# 3aknap', ©.027377730941327057), ('odiuianrtka onbra npocto', €.01694
9184969657337), ('cronu we npubmpante', ©.813992008173348533)1

1.0: [('wacTpih ncyeteca vepes', @,09840253600526355), ('Henpoxawwik ricte y', 0.01525438558230
3921), ('no xamcbkomy BimuyTTa', 9.014093158832818795), ('waHoBHi BNaCHMKW KOWTponwiATe', 8.01
3556390627025358), ('MeHw nepexocats 4epes', 0.007922417903176462)]

Product example:

L8 8 2 8 4

[ocuTb XOPOWWA TENEBI3OP, 3a cBOl rpowi. Bpas, nokw B HassHoOCTI He Gyno QLED, we He nponasanica 8 Hac.
FapHa MaTPMUs, AIACHO 4K KPYTO BWINANAE.

Uncrmin anapoin. Mned Mapker npawoe, ane He BCi 4OAATKM BOCTYNHI AnA NNaThopMH AeBanicy.

38yK TEX NOCTONHMA, TYUHICTb OK. LLIMPOKM#A CNEKTP HanawTysaHb.

FapHO CHHXPOHISYE 3 TEN, 3 TAKOXK IKKAYHTOM,

3 Henonikie, WO He AyXe 3PYHHO, Ue HOXKM, iX BUKOHAHHA Ta BIACTaHL MiX HUMK. He Ha KOXHY nosepxHio nigiine. Takox He
BRANOCH 3aNYCTUTH FONOCOBMA NOWYK, Ha NYNbTI

3aranom, B60POC 3a00BONEHMA

Key phrases retrieval result :

5.0: [('pesaiicy 38yk Tex ROCTOWHMA ryunicTs ok wupoxwit', 0.83062994728931737), ('rapHa martpuus
AihCHO 4K KPYTO BMUrNAma€e 4ucTuin', 0.013064794500673256), ('ne Bci popatkw pocTynwi ans nnatdo
pMu pesaicy', 0.010857166922353107)]

4.,0:[('ve Ha xomHy nosepxHio niniine Takox we', 0.06283447747477598), ('HanawTyBaHb rapHO CHHX
poniszye 3 ten a rakox', ©.03948537281964689), ('mapker npauwe ane He BCi poparku pocTynwi',
9.021330327883039093) ]

3.0: [('He Ha xoxHy nosepxHio nipidne Takox We', ©.014374213513001674), ('HanauTysaMb rapHo CHH
xpoHilye 3 Ten a vaxox', 9.0046424987388795766), ('Mmapker npauwoe ane e BCi popatkM NOCTYNH
i', 0.004141202199913658)]

2.0: [('He Ha xoxHy nosepxuio ninidne rakox He', ©.0010976648971925521), ('He BRAnOCA 3anycTuTH
ronocoBui nowyk Ha nynbTi', ©.00032213390834335984), ('mapker npauwe ane He B8Ci MOAAaTKM OOCTY
nui', ©.00022398978628207475)]

1.0: [('He Ha xoxHy nosepxHio niniipge taxox we', 0,0002507956194630538), ('He spanocs 3anycTuTw
ronocoBki nowyk Ha nynbTi', 9.362483207535017e-05), ('wasswocti e 6yno qled we we npopasanuc
7', 2.092947010928679e-05)]

Figure 4.5 - Results of applying LIME-based key-phrases retrieval

As it was already mentioned, the approach utilizes BPE tokens and explaina-

ble Al allowing it to adopt to data and domains that weren’t seen during training. In
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the following experiment the key-phrases retrieval is applied to reviews of three dif-
ferent domains: books, attractions and movies reviews. As in the previous experi-
ment, key-phrases retrieval is applied only to one review at the time. In this experi-
ment, both rating estimation and Attention-based key-phrases retrieval are tested.

The results are depicted on figure 4.6.

Attractions example:

A AxaywT lyrn 1/5
€3 3 TUKHi ToMy Ha cairTi G Google

QoHTaH PoweH 3 " Binnnyi" neper Ha "cMITT " Ta "
30Hy” micTa(((

Paniwe 6y8 QOHTaH, BUCTABM, KOHLEPTY, EMOUI, TYPUCTH. ..

3apas TyT HanbpyaHiwwi 6eper y micui, y BoAi nnasae Bce Bif 3acobis KoWTpauenuii Ao
namnepcie. HiXTO He YUCTUTL BOAY. Hemae 3a Akui KowT?

MNpaega?

A 5K WO 10 pecTopaHiB | Marasunis Ha 6epesi 6ina GponTanHy?

A 5K W0 A0 NpoKaTy KaTamapaHis 200 rpH 3 NIOANHK 33 YBEPTb roANHK?

BuiATh npocTo Ha 6eper Tyau y Beyepi 6puako. He AuBnAYMCH Ha “AK06M naTpyni
BIACEKOBMX™ NOBHO NbAHMUX NIANITKIB AKI HABUNEPeAKM AEMOHCTPYIOTb CBOI MyuHi
NI3HAHHA MATOM

Haxans sikock Tak(((

Predicted ratings : [2.0]

Key phrases retrieval result : {2.0: [('nepersopuecs Ha cMmiTTe3sanuue Ta GapuxHy 3oHy', 0.015
76997588078181), ('ryr HaiWbpynHiwmi Geper y micui y', 0.011942169706647595), ('na Geper Tyam

y Beyepi 6puako', 0.010015829970749715), ('He amsnauucb Ha AKkobGw naTpyni sidcbkoeux', 0.00938
5992287813375), ('¢oHTaH poweH 3 POA3MHKW BiHHWMUL nepersopuecs', ©,008514156603875259), ('eop
i nnasae Bce Bip 3acobis koWTpauenuii', 0.008232201216742396), ('30Hy micTa paHiwe 6ys ¢oHTaH
Bucrtasu', 0.0058867425347367925), ('BifNCLKOBMX MOBHO NbAHUX NigniTkis Aki Hasunepepku', 0.005
053303767150889), ('rpH 3 noauHW 3a 4sepTb roauHn', 0.004214523292224233), ('sk wo po pecropa
Hies i Mara3smuis', 0.0036697691733328006), ('Hasunepeaxkn AEMOHCTPYWTb CBOI ryuyHi ni3HanHs mato
M', 0.003214517879920701)]}

Books example:

Opwi LLixona i dedok
7 nororo 2021 p 5 Ganis
Peuensin

CuUMOHEHKO - Lie OAWH i3 MOiX ymoSnerux noeTis. Xoua, # B3arani 060XHIOI WICTAECATHUKIB, 8 Ginbly
38 BCe "HaTVNOBIWMX", AKKX, HANEBHO, 3HaITL yoi. 36ipka BMkoHaHa Ay xe SKICHO Ta ayxe
KOMMAKTHa, TOMy MOXHa 6paTy ii 3 coboio, uob untath ae sabaxaere. Bipwi CumoHerka 3aBxan
MBIOTb LWOCh chinbHe, sk 5 Aymal. LLlonanmeniue, To 81 aHanaere cxoxi xyaoxHi 3aco6u, axi siv
BUKOPUCTOBYE y CBOIX TBOPAX, OKpim eniteris, 3sicHo. MoxHa no6: GaraTo 3sep . b
nopieuHsiHe, rinepGon, Ayxe 4acTo 3ycTpiualoThes iHBepcl, ane He Taki, WO MOXHa NOuYTH OAPa3y X,
unTaloum TBip.

Mpuxosarn o »

Predicted ratings : [5.0]

Key phrases retrieval result : {5.0: [('ski BiH BukopucroBye y csoix', 0.04145914721302688),

('wo MoxHa nouyTu oppa3sy x', 0.01607839819043875), ('a 6inbw 3a Bce HaWtunosiwux', 0.00816243
5912527143), ('to Bu 3Hanpete cxoxi xypnoxHi', 0.007453315099701286), ('MoxHa 6Gpatm ii 3 cobo

o', 0.006336925411596894), ('myxe akicHo Ta nyxe kKoMnakTtHa', 0.0028349099680781364), ('omuH i
3 Moix ynwbnenux noetis', 0.0028091523447073994), ('cuMmOHEHKa 3aBXAM MalThb WOCL cninbHe', 0.0
013911765068769454) ] }

Movies example:

licTe Bopuc cTb 14 nuctonapa 2023 10:48

3a nepLwi 20 XBUNWH BKX 3PO3YMIETE YM KIHO BaM NiAXOAMTb UM He NiAXOAMTb. H 3pO3yMiB WO MeHi HyaHo, ane goansuscs. MoTiM
noXanie Lo BUTPaTUB Yac. Ha Xanb KiHo 6e3 igei.

Binnosictn

Predicted ratings : [1.0]

Key phrases retrieval result : {1.0: [('s 3po3ymis wo meni Hyawo', 0.01740614268928766), ('sa
M NigxoAuTh 4K He nigxoauTs', 0.011587848328053952), ('Ha xanb KiHo 6Ge3 ipei', 0.011349701695
144177), ('xsunuH BM 3po3ymieTe uyum kiHo', 0.010309686139225959), ('noviM noxanie wo BUTpaTus
vyac', 0.006757455924525857)]}

Figure 4.6 — Results of applying Attention-based key-phrases retrieval for unseen

domains
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As it can be seen from the experiment, trained model does a good job in both
predicting rating for unseen domains and retrieving of key-phrases. The empirical
results suggest that presented approach can be utilized to some extent for rating es-

timation and key-phrases retrieval without a need for fine-tuning it to new data.

4.3 Comparison to most similar analog

Finally, it’s beneficial to summarize differences between current work and the
most similar analog, in particular master thesis of Bobenko. Although no particular
comparison in terms of prediction capability of models wasn’t provided due to the
difference in modeling problems and metrics, the differences in terms of overall ap-
proach are highlighted (table 4.4).

Table 4.4 — Comparison of current work with the most similar analog

Characteristic Current work Bobenko’s work
Number of domains 3 1
Number of data sources 3 2
Number of samples ~671k ~128k
Modeling problems Sentiment analysis, review | Sentiment analysis

rating estimation

Tokenization method BPE Word tokenizer
Number of unique tokens 30k 8.238.336
Files needed for inference Tokenizer, model Model, table of

positive and nega-

tive n-grams
Key-phrases retrieval method | LIME/Attention TF-IDF/PMI
Operating level Paragraph Sentences
Handling of OOV tokens + -
Data filtering + -

Contextualization + -
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As it can be seen from aforementioned table, the gathered dataset is this work
1s much more versatile than the one in Bobenko’s work and covers 3 different data
sources and 3 domains. Logically, models trained on such dataset are capable of
understanding and handling more cases. Furthermore, even though the data is human
generated meaning that some samples have discrepancy between reviews and their
rating, no filtration was done in concurrent work. Speaking of efficiency, by utilizing
BPE tokenization current model’s embedding matrix needs to store only 30k unique
tokens which is in ~274 times lower than in Bobenko’s work. By applying BPE
tokenization, current model is capable of processing even those words and phrases
which were absent in dataset making it more adaptive to new data. For final infer-
ence only model itself and tokenizer is needed which is far more memory efficient
than storing model with embeddings for each word along with table of positive and
negative n-grams. Finally, by utilizing Attention/LIME for key-phrases retrieval pre-
sented approach provides more contextualization than retrieval from prebuilt n-
grams in table. To summarize, presented approach is more efficient and adaptive to

new data.

4.5 Conclusions

The process of ratings estimation and modelling of sentiment based on col-
lected reviews textual data along with creation of technology for key-phrases re-
trieval is described in this chapter. The evaluation of proposed methodologies to
accomplish the task w.r.t predefined metrics is conducted. The analysis of evaluation
results for modelling showed that pretraining of word-embeddings, utilization of
noise-tolerant objectives and usage of attention mechanism improves results on all
the domains on both tasks.

Although, conducted experimenters revealed that in general, attention mech-
anism provides better results than LIME, its recommended to experiment with both

for a specific use-case.
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5 THE ECONOMIC SECTION

5.1 The technological audit of the developed system for searching key

phrases in Ukrainian-language feedback

In conditions of intense competition, text analysis holds tremendous im-
portance for companies monitoring mass media concerning specific events and busi-
nesses. This is vital for generating analytical reports and offering business insights
that delve into sentiments regarding particular events or companies within a defined
timeframe. Typically, sentiment analysis provides only a general overview of an
event or company, but it doesn't address the underlying causes that influenced such
outcomes.

To address this, sentiment analysis or reviews rating assessment is required.
Considering the challenge of generalizing reviews, it's crucial for analysis methods
to account for sarcasm, word order, and other intricate linguistic patterns, subjective
nature of reviews, numerous errors, and typos in words, etc., which might lead to a
considerable number of diverse tokens that can influence the reliability of drawing
conclusions.

Hence, prior to our master's thesis, the task was set to investigate the utiliza-
tion of deep learning algorithms and classical machine learning to study conditional
data distribution and apply artificial intelligence techniques to extract the most sig-
nificant textual features in the Ukrainian language.

As a result, we selected, trained, and evaluated algorithms for reviewing rat-
ings and sentiment analysis. We chose explanatory Al algorithms for extracting key
phrases in the Ukrainian language and constructed an algorithm for key phrase ex-
traction, evaluating it in comparison with the defined explanatory Al algorithms.

To assess the level of commercial potential of our developed system for
searching key phrases in Ukrainian-language feedback using artificial intelligence
technologies, we conducted a technological audit by inviting three renowned ex-

perts: a Doctor of Technical Sciences, a Professor, Oleh BISIKALO Candidate of
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Technical Sciences and Associate Professor Maria BARABAN, Candidate of Tech-
nical Sciences and Associate Professor Volodymyr HARMASH.
The assessment of the commercial potential of our developed system for

searching key phrases in Ukrainian-language feedback using artificial intelligence

technologies was conducted based on the criteria summarized in Table 5.1.

Table 5.1 — Assessment criteria for evaluating the commercial potential of

any development and their score rating (onascale of 0 -1 -2 - 3 - 4 points)

Evaluation Criteria and Scores (on a 5-point scale)

Criterion 0 1 2 3 4
Technical Feasibility of the Concept:

11 The Concept Concept Concept Product's
credibility of validated by validated by tested in operational
the concept is | expert opinions calculations practice capability

not verified in
confirmed. real-world
conditions

Market Advantages (Disadvantages):

22 Numerous | Few analogs ina | Several analogs | One analog in | No analogs for
analogs in a small market in a large a large the product in
small market market market a large market

33 The price of | The price of the | The price of the | The price of The price of
the product is product is product is the product is | the product is
significantly | slightly higher | approximately | slightly lower | significantly

higher than than that of equal to the than that of | lower than that
that of analogs prices of analogs of analogs
analogs analogs

44 Technical The technical The technical | The technical | The technical
and consumer | and consumer and consumer | and consumer | and consumer
properties of | properties of the | properties of the | properties of | properties of
the product product are product are on the product | the product are

are slightly worse par with those are slightly significantly
significantly than those of of analogs better than better than
worse than analogs those of those of
those of analogs analogs
analogs
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Evaluation Criteria and Scores (on a 5-point scale)

Criterion 0 1 2 3 4
Market Prospects
55 Operational Operational Operational Operational Operational
costs are costs are slightly | costs are on par costs are costs are
significantly higher than with the slightly lower | significantly
higher than | those of analogs operational than those of lower than
those of costs of analogs analogs those of
analogs analogs
66 The marketis | The market is Medium-sized Large and Large market
small and small but shows market with stable market | with positive
lacks positive positive positive dynamics
dynamics dynamics dynamics
77 Active Active Moderate Slight No
competition competition competition competition competitors
from major
companies in
the market
Practical Feasibility
88 Lack of Requires Minor training Minor training Experts
experts in hiring experts | required for staff | required for staff | available
both or significant and slight both
technical and | investment of | expansion of the technically
commercial time and team and
implementati money in commerciall
on of the idea training y
existing
personnel
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Evaluation Criteria and Scores (on a 5-point scale)

Criterion 0 1 2 3 4
99 Significant Slight financial Substantial Slight financial | No need for
financial resources needed, financial resources additional
resources but no funding resources needed, funding
needed, but sources available | needed, funding funding
absent. Lack of sources exist sources exist
funding
sources for the
idea
110 Requires Materials Expensive Accessible and | All materials
development | required are used | materials needed | inexpensive for idea
of new in military- materials implementatio
materials industrial needed n are well-
complex known and
have long been
used in
production
11 Implementatio | Implementation | Implementation | Implementatio | Implementatio
n timeline timeline exceeds | timeline from 3 n timeline is n timeline is
exceeds 10 5 years. Return to 5 years. less than 3 less than 3
years on investment Return on years. Return | years. Return
period exceeds 10 investment on investment | on investment
years period exceeds 5 | period from 3 | period is less
years to 5 years than 3 years
112 Necessary Requires The process of Only No regulatory
development acquiring obtaining notification to | constraints on
of regulatory | numerous permits permits for relevant production and
documents and | for production production and authorities product
acquiring and product product about implementatio
numerous implementation, | implementation | production and n
permits for demanding requires minor product
production and | significant costs costs and time | implementatio
product and time n is necessary
implementatio
n
Invited experts have evaluated our developed system for searching key
phrases in Ukrainian-language feedback using artificial intelligence-based

technologies quite highly (refer to Table 5.2):
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Table 5.2 — Evaluation Results of the Commercial Potential of the

Development

Criterias Last name, initials of the expert
Oleh BISIKALO | Maria BARABAN Volodymyr HARMASH
Scores given by the experts:

1 3 4 4
2 4 3 4
3 3 3 3
4 4 4 4
5 3 3 3
6 3 3 4
7 3 4 3
8 4 4 3
9 3 3 4
10 4 4 3
11 4 3 4
12 3 4 4

Sum of 41 42 43

grades

The arithmetic mean (Cp), of the scores assigned by the experts was:

3

2.5
GELT a3 16, 0
3 3 3

The overall level of commercial potential for any development was determined
based on the criteria outlined in Table 5.3 [44].

Guided by the recommendations in Table 5.3, it can be concluded that the
developed system for searching key phrases in Ukrainian-language feedback using
artificial intelligence technologies was evaluated by experts at 42 points, indicating

that named development possesses a commercial potential categorized as "high".
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Table 5.3 — Levels of Technical and Commercial Potential of the Development

The arithmetic mean of scores The level of technical and
calculated based on the experts' commercial potential of the
conclusions. development.
0 -10 Low
11-20 Below average
21-30 Average
31-40 Above average
41— 48 High

This is due to the development being based on cross-industry data aggregation
and a dataset containing Ukrainian feedback. It addresses the challenge of evaluating
contributors' ratings, analyzing their sentiments expressed in Ukrainian, among
other aspects. Moreover, it solves the problem of automatic extraction of key phrases

and summaries specific to the Ukrainian language.

5.2 The cost estimation for developing a system to search for key phrases in

Ukrainian language within feedback using artificial intelligence technologies.

During the work, the following expenses were incurred:

1. Primary salary of executors 3,:

3, =— -t uah, (5.1)

Where M represents the monthly base salary of a specific executor in UAH;
In 2023, the salary ranges for researchers fall within (6700...26000)
UAH/month; T, — indicates the number of working days in a month; let’s assume

T, = 21 days.
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The calculations of the primary salary of the executors will be summarized in
Table 5.4:

Table 5.4 — Calculation of the primary salary of executors (developers)

Monthly base | Payment per | Number of | Remuneration Notes
Position title of the salary, UAH | working day | working costs, UAH
executor (or per hour), days
UAH
1. Scientific supervisor of 22250 1059,52 20 hrs ~ 3532 6 hrs per day
the Master's qualification
work
2. Student developer - 6700 319,05 75 days ~ 23929
Master's student
3. Consultant in the eco- 19800 942,86 1,5 hrs ~ 236 6 hrs per day
nomic section
4. Other consultants 18500 880,92 3,5 days ~ 3083
Total 30 780

2. Additional remuneration of the executors 3 is calculated as (10...12 of the

primary salary of the executors, which means:
3, =(01..0,12)-3,. (5.2)
For our case, we will obtain:
3,=0,113 x 30780 = 3478,14 =~ 3479 uah.

3. Accruals to the payroll H,;, are calculated by the formula:

H, =(3, +3H)-%, (5.3)

where 3,— primary salary of the executors, UAH;
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3, — additional remuneration of the executors, UAH;
B — The rate of the unified social security contribution for mandatory state

social insurance; § = 22%.

Then:
H,, = (30780+3479) x 0,22 = 7536,99 =~ 7537 uah.

4. Material expences M are calculated per each material type:
n n
M=>H;-I;-K; - > B;-1I, uah, (5.4)
1 1

Where H; — material expences per i designation, kg; L1; — cost of a material i,
uah/kg.; K; — transportation expences coeficient, K; = (1,1...1,15); B; — material dis-
posal mass per material i, kg; 11, — material waste price per material i, uah/kg; n —
total number of used materials.

5. The expenses on components K are calculated by the formula:
K=)H; I, -K; uah, (5.5)
1

Where H; — the quantity of components i-th type, pcs.; 1l; — price per compo-
nent of i-th type, uah; K — transportation expences coeficient, K; = (1,1...1,15); n —
total number of components.

Following the analogy with other developments, the cost of all utilized mate-
rial resources is approximately 3000 UAH.

6. Depreciation (A) of equipment, computers, and premises A can be calcu-

lated by the formula:
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A=——2.— yah, (5.6)

Where 11 — the total book value of fixed assets in UAH;
H, — the annual depreciation rate: H, = (2...25)%;
T- is the period of equipment, premises, etc. the usage, in months.

The calculations made have been summarized in Table 5.5:

Table 5.5 — Calculation of depreciation deductions

Equipment, Book | Depreciat| Period of Depreciation
premises, etc value, ion rate, |usage, months.| deductions, UAH
UAH. %
1. Personal comput- 99900 25 3,25 (70%) 4734,84

ers, printers, etc

2. Department and 51600 2,5 3,25 (65%) 222,09

faculty premises

Total A =4956,93 = 4957

7. Expenses for electrical power Be are calculated using the formula:

B-II-®-K
R (5.7)

a

B

where B — price of 1 kilowatt-hour. Electricity in 2023 W = 4,5 uah/kilowatt;
IT— The installed capacity of the equipment kWt; IT = 1,05 kWt;

@ — actual number of equipment operating hours, hours.

Assume, that @ = 300 hrs;

K. — power usage coefficient; K; <1 =10,76.

K, — Useful action coefficient, K, = 0,61.
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Then the expences for electricalpower:

_B-I-®-K, 4,5-1,05-300-0,76
e K 0,61

pis

B

=1766,96 ~1767 ;4.

8. Other expences Biy can be estimated as (50...300)% from the initial salary

of the performers:
Bi.=Kiy x3,= (0,53,0) X 3. (58)
In this case let’s assume that K;, = 1,6. Then:
Bix = 1,25 x 30780 = 38 475 uah.
9. Total sum of all the previous expences gives the total expences of the cur-
rent stage execution by the Student developer - Master's student — B.
In this case:

B =30780 + 3479 + 7537 + 3000 + 4957 + 1767 + 38475 = 89995 uah.

10. The calculation of the total costs for the development and final refinement

of the work we have been done is carried out according to the formula:

B
3B=—, 5.9
5 (5.9)

Where B - coefficient characterizing the stage of completion of this work.

Since our development still requires refinement, it can be assumed that  ~ 0,65.
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89995
Then: 3B= 06 138453,85 uah or approximately 139 000 uah.

)

So, the projected total expenses for the system we have developed for search-
ing key phrases in Ukrainian reviews based on artificial intelligence technologies

amount to approximately 139,000 hryvnias.

5.3 Calculation of the economic effect from the potential commercialization
of the developed system for searching key phrases in Ukrainian language reviews

based on artificial intelligence technologies

The market analysis indicates that our developed system for identifying key
phrases in Ukrainian language reviews using artificial intelligence technologies will
have substantial demand in internet platforms and stores (such as Prom, Rozetka),
companies that contain and analyze reviews regarding restaurant businesses and ho-
tels (Booking.com, TripAdvisor), media monitoring companies, and others. Each of
these entities will have the ability to receive automated distribution of reviews and
automation in the search for factors that most influence the average assessment of
various phenomena, events, companies, etc. (for example: regarding positive and
negative product qualities, the balance between price and quality, etc.).

Therefore, if our development is implemented starting from January 1, 2024,
its results will manifest throughout 2024, 2025, and 2026

The forecast for increasing demand for our development by year is as follows:

a) 2023 - 1 unit (our development);

b) 2024 - +3 units compared to the base year (i.e., 3 clients);

c) 2025 - +6 units compared to the base year (i.e., 6 clients);

d) 2026 - +10 units compared to the base year (i.e., 10 clients).
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According to expert conclusions, the potential market price for our develop-
ment is approximately $26,000, or roughly 1,000,000 Ukrainian Hryvnia. In con-
trast, similar (though not identical) developments that perform the functions men-
tioned earlier are priced in the market at up to 800,000 Hryvnia.

The potential increase in net profit AIl,, from taking the product to the market

will amount to:

ATL = 3 (AL, - N+ 11, - AN), %-p- (1= -2), (5.10)
1 100

Where All, — an improvement in the primary qualitative indicator from im-
plementing the outcomes of our development in this year. In our case, this is:

AIl, = 1000 — 800 = + 200 000 uabh;

N — the main quantitative indicator that defines the scope of activities in the
year before the implementation of the development results; N = 1 pcs.;

AN — improvement of the main quantitative indicator due to the implementa-
tion of the development results.

This improvement will be as follows: in 2024 - +3 units, in 2025 - +6 units,
and in 2026 - +10 units.

L1, - the primary qualitative indicator (i.e., the price) determining the scope of
activity in the year following the implementation of the development results uah;
I1,= 1000 thousand uah;

n — total number of years, during which the positive results from development
implementation is expected; in this scenario n = 3;

A — The coefficient that takes into account the value-added tax (VAT) pay-
ment; A =0,8333;

p — The coefficient that considers the product's profitability. It is recom-
mended to assume p=(0,2...0,5); set p=0,5;

v — the corporate tax rate. In 2023-26 years v = 18% (assumption).
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The potential increase in net profit AI1; for a potential investor during the first

year after the possible implementation of our development (2024), it would be:
18
AIT :[200-1+1000-3]-0,8333-0,5-(1—m) ~1094 thousand uah.

For the potential investor during the second year after the possible implemen-

tation of our development (2025), it would be calculated similarly:
18
All, = [200-1+1000-6]-0,8333-0,5-(l—m) ~ 2119 thousand uah.

The potential increase in net profit AIl; for a potential investor during the first
year after the possible implementation of our development during the third year
(2026) is totalled:

ATI, :[200-1+1000-10]-0,8333-0,5-(1—%} ~ 3485 thousand uah.

The total value of the increased net profits from the potential implementation

and commercialization of our development:

A+1)

(5.11)

=%
1

Where AIT, — the increase in net profit in each of the years when the results

of the completed and implemented work are manifested is as follows;
T — the time period during which the results of the implemented work are man-
ifested is for 3 years, represented by t=3 years.;

© — the discount rate. Let’s assume t = 0,10 (10%);
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t — the period of time from the initiation of the development of the system for
searching key phrases in Ukrainian language feedbacks based on artificial intelli-
gence technologies to the moment when potential net profits are obtained by the
potential investor can be termed as the "development-to-profit period” or the "in-
vestment gestation period.

Then, the present value of the growth of all potential net profits (PP) that a
potential investor can gain from the commercialization of our development would
be:

_ 1094 2119 3485
(1+0,1)> (1+0,1)° (1+0,)*

~ 904 +1592 +2380 = 4876 000 uah.

The present value of investments (PV) that should be allocated towards the
implementation of our development would be: PV = (1,0...5,0) X Ba,.

In our case PV = (1,0...5,0) x 139 =5 x 139 = 695 thousand uah.

The absolute effect of potential investments made in the implementation of

our development would be Egg.

Euge = ITIT — PV, (5.12)

The notation " ITIT" stands for the present value of the increase in all net profits
for the potential investor from the potential commercialization of the development,
expressed in currency (hryvnias).

PV — The present value of investments (PV) amounts to 695,000 hryvnias.

The absolute effect from the potential implementation of our development will
be:

Eae = 4876 — 695 = 4181 000 uah.

Next, we will calculate the internal rate of return (IRR) of the invested capital:
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B, =Ty Cafe _q (5.13)
PV

Where E.s. — the absolute effect of the invested capital; E,s. = 4181 000 uah;
PV — the present value of the initial investments PV = 695 000 uah;

T, — development lifecycle, years.

T, = 4 years (2023, 2024, 2025, 2026 years)

In this case it would be:

L= 4"1+%851— =1+6,0158 —1=4/7,0158 —=1=1,627—-1=0,627 = 62,7%.

Next, let's determine the minimum profitability, below which it would not be
profitable for the potential investor to engage in the commercialization of our devel-
opment. The minimum profitability or the minimum (barrier) discount rate 1 IS

determined by the formula:
T = d+T, (5.14)

where d — the weighted average rate on deposit operations in commercial
banks; in 2022-2023 in Ukraine d = (0,10...0,12);
f — indicator characterizing the riskiness of investments;
f =(0,1...0,50). Assume f =0,30.
In this case:
Tyin = 0,12 + 0,30 = 0,42 a60 T yix = 42%.

Given the magnitude E; = 62,7% > 1,4, =42%, then a potential investor may

indeed be interested in financing and commercializing the development. Next, we
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will calculate the payback period for the funds invested in the potential commercial-
ization of the system developed for searching key phrases in Ukrainian language
feedback using artificial intelligence technologies.

The payback period T, is calculated by formula:

Tox=—-. (5.15)

In this case the payback period T:

1
T =——=1,59 <
o = 0,627 years < 3 years,

this indicates the potential viability of commercializing our developed system
for searching key phrases in Ukrainian feedback using artificial intelligence technol-
ogies.

Further, a simulation was conducted to model the relationship between the
internal rate of return of potential investments and the inflation rate in the country.

If the inflation rate in the country increases to 20%, then:

_ 1094 2119 3485
(1+0,2)> (1+0,2° (1+0,2)*

~ 760 +1226 +1680 = 3666 000 uah.

The absolute effect from the potential implementation of our development will

amount to:

Easc = 3666 — 695 = 2971 000 uah.

Next, we will calculate the internal rate of return (IRR) of the invested invest-

ments:



98

B, =Ty Cafe _q (5.13)
PV

where E,s. —absolute effect of the invested investments; E.q. = 2971 000 uah;
PV — the present value of the initial investments PV =695 000 uah;
T, — development lifecycle, years.

In this case:

L= 4,/1+%l— =3Y1+4,2748 —1=3/5,2748 —1=1,515-1=0,515=51,5%.

Given magnitude E, = 51,5% > 1,44 =42%, then the potential investor might
be interested in financing and commercializing our development in principle. If the

country's inflation rate rises to 30%, then:

_ 1094 2119 3485
1+0,3)° (1+0,3° (1+0,3)"

~ 647 +965 +1220 = 2832 000 uah.

The absolute effect from the potential implementation of our development will
be:
Ease = 2832 — 695 = 2137 000 uah.

Next, let's calculate the internal rate of return of the invested investments (E,):

B, = Tull4 Dase _q (5.13)
PV

where E.q. — the absolute effect from the potential implementation; Ens. = 2137
000. uah;

PV — the present value of the initial investments PV = 695 000 uah;

T, development lifecycle, years.
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In this case:
L= 4,/1+%— =31+3,0748 —1=344,0748 —-1=1,42-1=0,42 =42,0%.

Given E; =42,0% = 1, =42%, then the potential investor might be interested
in funding and commercializing our development in principle.

If the inflation rate in the country increases to 40%, then:

_ 1004 2119 3485
(1+0,4)°  (1+0,47°  (1+0,4)*

=~ 558 +722 +907 = 2187 000 uah.

The absolute effect from the potential implementation of our development will
be:
Easc = 2187 — 695 = 1492 thousand uah.

Next, let's calculate the internal rate of return of the invested investments (Es):
E, =Tl Cabe _q (5.13)
PV

where E,s. — the absolute effect from the potential implementation; Esc = 1
492 000 uah;

PV — the present value of the initial investments PV =695 000 uah;

T, development lifecycle, years.

In this case:

L= 4"1+%— =1+2,1468 —1=1/3,1468 —1=1,332—-1=0,332 =33, 2%.

Given magnitude E; = 33,2% < 1, =42%, then a potential investor may not

be interested in the commercialization of our development.
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The calculations made in the form of graphs are presented in Figure 5.1.

70
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Figure 5.1 — Modeling the relationship between the internal rate of return of
potential investments and the inflation rate in the country (10%, 20%, 30%, and
40%).

The analysis of the charts in Figure 5.1 shows that at an inflation rate of 10%,
the internal rate of return of investments is Ev = 62.7%, which exceeds the threshold
value min = 42%. Therefore, the commercialization of our development may be
worthwhile. At an inflation rate of 20%, the internal rate of return of investments is
Ev = 51.5%, which also exceeds the threshold value min = 42% The analysis reveals
that at an inflation rate of 30%, the internal rate of return of investments is Ev =
42.0%, which equals the threshold value min = 42%. Hence, the commercialization
of our development can also be reasonable.

However, at an inflation rate of 40%, the internal rate of return of investments
allocated in the commercialization of our development amounts to Ev = 33.2%,
which falls below the threshold value min = 42%. Therefore, the potential investor's
commitment to commercialize our development might be in question. However, a
final decision on this matter requires additional calculations (possibly reducing the
investment risk level, increasing the demand for the development, enhancing the

selling price of the development, etc.).



101

The outcomes of the performed economic part of the master's qualification

work are summarized in the table 5.6.

Table 5.6 — The outcomes of the performed economic part

years

Indicators Defined in Attained in the Conclusion
Technical Master’s thesis
task

1. Development Less than 139 000 uah. Achieved
expenses 150 000 uah
2. Absolute effect More than 4 181 000 uah Completed
from implementing ~ 4000 (with 10%-inflation)
the development, 000uah
thousands of UAH
3. Internal Rate of More than 62,7% Achieved
Return on 42% (with 10%-inflation)
Investments, %
4. Payback Period Less than in 1,59 yrs Completed
of Investments, 3 yrs

Thus, the key technical and economic indicators of the developed system for

searching key phrases in Ukrainian language within feedbacks using artificial intel-

ligence technologies, as defined in the technical task, have been achieved.
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CONCLUSIONS

A new approach to key-phrases retrieval for Ukrainian language is presented
in this work. A comprehensive analysis of previous work, competitive approaches
and problem at hand was conducted, confirming a need for more adaptable and ef-
fective approach. In order to tackle the problem, a method based on training discrim-
inative model and reverse-engineering of its decision process based on explainable
Al was provided. The creation of technology for key-phrases retrieval required to
solve the list of subtasks, including analysis and choosing of programming language
and libraries, data collection, processing, modelling and incorporation of explainable
Al.

Based on analysis of programming languages and tools, it was decided to uti-
lize Python language along with the task-specific libraries. Due to the requirement
of convenient integration and adaptability to unseen data, BPE tokenization was ap-
plied along with Word2Vec embeddings.

The data was collected from TripAdvisor and Rozetka by utilizing web-scrap-
ping techniques. Due to incorporated noise, the data was processed and automati-
cally filtered by applying machine learning. As the result a medium-size dataset of
Ukrainian reviews and corresponding ratings consisting of 662907 samples was pre-
pared. Based on data analysis, the impactful insights were gathered and incorporated
into the modeling stage.

During modeling stage, list of models was tried out, resulting into models
trained for sentiment analysis and reviews rating estimation. In order to fight over-
fitting and noisy data, noise-tolerant objectives were used along with Dropout tech-
nique. The conducted experiments w.r.t f1-macro score revealed that architecture
consisting of Attention mechanism, two LSTMs, pretrained Word2Vec embeddings
and Huber-loss achieves the best result along all the domains. The final model
achieves averaged f1-macro of 0.719 for task of sentiment analysis and 0.5526 for

task of rating estimation.
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During explainability and key-phrases retrieval stage, the experiments in-
cluded comparison of Attention and LIME techniques. In order to retrieve key-
phrases in the form of n-grams, specific aggregation algorithm was developed.
Based on human evaluation it was revealed that Attention on average achieves better
results, while LIME provides better coverage of phrases. Further experiments re-
vealed that for applying method to standalone reviews, the need of thorough hyper-
parameters selection w.r.t aggregation algorithm arises. Final experiment, showed
that approach is applicable to other domains without a need for finetuning to new
data. The comparison with most similar analog proved that constructed algorithm is
more memory efficient and is more capable of adaptation to unseen data and new
domains, which fully satisfies the purpose of work.

Despite of the fact that current approach provides a possibility of key-phrases
retrieval for cross-domain reviews, there are still points to improve including exten-
sion to new domains, data quality, model’s tolerance to sarcasm and noise, multi n-
gram retrieval process. In the further work, the plans are to enhance current solution
in terms of key-phrases retrieval by applying both modeling and algorithmic tech-
niques and adopt it to unsupervised aspect-based sentiment analysis and compare it
to other methods in the field. Even though the experiments with key-phrases retrieval
algorithm were conducted in Ukrainian language, it can easily be adopted to any
other. All the models, code and data are open-sourced for further analysis and en-

hancements of Ukrainian NLP.
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Technical Task
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1. Ha3Ba Ta raiy3b 3aCTOCYBaHHS
Po3poOka cucteMu BU3HAYEHHS KIIIOUOBUX (pa3 y BIATYKaX YKPaiHCHKOI MOBOIO
3a JOTIOMOTO0 MITYYHOTO 1HTENEKTY. ['amy3b 3acTocyBaHHs: cepa MOHITOPUHTY i

anamituku 3MI, chepa Toprisii il HaTaHHS MOCTYT.

2. [lincraBa a1t po3poOKH
[TincraBoro myis BUKOHaHHA poOoTH € Haka3z Ne247 mo BHTY Bim «18» 09
2023p., Ta iHauBiayaidbHe 3aBaaHHs Ha MKP, 3atBepmxene mporokosom Nel

3acimanns kadeapu AIIT Bix «30» 08 2023p.

3. Mera Ta nmpu3HAYCHHS PO3POOKH
MeTtoto poOoTH € po3poOKa CHCTEMH JJisi BU3HAYCHHS KIIOYOBUX ¢pa3 y

BIJITYKaX YKPaiHCHKOIO.

4. JTxepena po3poOku

1. Haykin, S. S. (2009). Neural networks and learning machines. Upper Saddle
River, NJ: Pearson Education.

2. Grus, J. (2015). Data Science from Scratch: First Principles with Python. Beijing:
O'Reilly. ISBN: 978-1-4919-0142-7

3. Ryan Mitchell. 2015. Web Scraping with Python: Collecting Data from the
Modern Web (1st. ed.). O'Reilly Media, Inc.

5. [Toka3HUKH PU3HAYEHHS

OCHOBHI TeXHIYHI BUMOTH Ta MiHIMajbHI CUCTEMHI BUMoru no mporpamu: OC:
Windows XP/Ubuntu, npomecop: Core 2 Duo, onepatuaa mam’sth: 4 GB OII,
BimeokapTa: Intel HD Graphics 4000, miciie Ha qucky: 2 GB goctynHoro micrs.
MeTtoau qOCHIIKEHHS:

B po60Ti BUKOPUCTOBYIOTHCSI METOIU aHAJII3y, MOJECIIOBaHHs, Kiacugikarii, cro-
CTEPEKEHHSI, IPOTHO3YBaHHSI, €KCIIEPUMEHTY Ta IPArMaTUuyHOi MOJIE]1 HAYKOBOTO

JIOCITIKEHHS.
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PGSYJILTaTI/I pO60TI/I InmporpamMu: BHU3HAYCHHA OHiHKI/I BiIIFVKV;BHSHaquHH

TOHAJILHOCTI BIATYKY. BHU3HAUEHHS DeJeBAHTHUX (dpa3 BIAHOCHO Meper0adeHol

OIIIHKH BITVKYV:

6. ExoHoMi4H1 TOKa3HUKHU

J10 €eKOHOMIYHUX MOKA3HUKIB BXOMSTh:
— BUTpPATH Ha po3pOOKyY — He Oubie 150 THc. rpH;
— abcontoTHUM edeKT Bl BIPOBAKEHHS PO3POOKHU — HE MEHIIIE 4 MJTH. TPH;
— BHYTPIIIHS JOX1IHICTh 1HBECTHUIIIA — HEe MeHIie 42%;

— TEpPMiH OKYITHOCTI — He OUTbITe 3 POKIB.

7. Ctanii po3poOku
a) Anaii3 mpeametroi oomacti 20.09 —02.10

0) Bubip incTpyMeHTIB po3poOKu, MOBU TiporpamyBanHs i 6i0miorex 02.10 — 10.10

B) 30ip maHuX i ix 00poOKa 11.10-23.10

r) TpenyBaHHsI MOjeliel i CTBOPEHHSI CUCTEMH JUIsl BUSHAUCHHS KIIOYOBHUX (Ppa3

23.10-08.11

1) Exonomiuna yactnaa 08.11 —11.11

e) Odopmienns matepianiB g0 3axucty MKP 11.11 - 20.11

8. Ilopsi1oK KOHTPOJIIO Ta MPUMUMaHHS

Py6ixxuMi1 KoHTpOIH TpoBecTH 10 «01» rpyans 2023 p.
[Tonepenniii 3axuct MKP nipoBectu 10 «21» rpyaus 2023 p.
3axuct MKP nposectu 1o «18» rpynns 2023 p.

Po3po6us cryaent rpynu 11CT-22m Bonogumup KOBEHKO
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Appendix B (required)

List of graphic materials
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Figure B.1 - Schematic view of an algorithm for questions detection
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Distribution of characters number in reviews on log10 scale
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Figure B.3 — Scheme showcasing automated data filtering approach
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Entity name : Ibiza_Club_Restaurant, average rating : 2.94
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"ane mpHCTORMH Tepcoran {, "afo ity kameas ssar, (R TOMY BiInowEBaiTe Tinnkw, 'He Ix Dra aysexa’ [ENCTINGHTEE
8 e TypucTEma |, orasaTs mo me Mapns', 'memae cercy foro Taw’) 13

Attention results : (ErTpauaiite ceiff nac ', [T, BOASRIERE . 1T, HIVIE CECTMH . iHakme',
'TVPHCTIE , ELIMIHHEH BiT', 'paxyECk « 3podH cam, 'BELD Toro , AR, TOCHOIAp CBOL] COpPEEE ., - pid CMIMHE ., '[Hakme yEpalEa
- npexpacea, [OOSR . 1palHa 1A NOTANEIMOro EKETEHER , ‘Tan Hevae . paskir, [ENDNSEN
. RS . ohimianTox i Sapueris |, 'omnaTa TITEEM TOTIEECES U, 'S Apec - KomoM, 'barTacTmIRa |

ame 7, 'cam » o TypacTis') 20
Most influencial phrases for rating of 3.0

Lime results - (e Bassn 0y 0 xoponal CepRIcon, ‘S0 vepes foro postantys sy, FHFAR OOCTTOS | BaRHA CEPERHE 2.1, '«
»icre GyTi Ranpesoian’, [Eie HPHCTOMRIE HEPEOHAT |, 'FOMH EHIPAETIATE PiEeHs CepEicy’, Tpusesem & Te mo', [NHEIHEE
G . FSRNSREORONOR 1= . 2Hi | IIZTIT, 52, 'Be10 A0pOry 10 BX0AY, 'Taxoro pien: i SSRe.
"Gymo EHTY Pk SARNANY HeNOTAMEN, FiIyH CEOIME (HAKme VEpdina|, 'KOITVEAE CEOIX BETpar Xoga) 13

Attention results - ([iETMIISSINSSENES |, TaTiTs 32 T¢ |, ‘ToBipTe Meri i muaTiTy', [N O ChRI
sonopocreit  sa, [HONRDESTENSEINPENRIRES . =i 1ro=EEaiiTe TiTsxs 6117 Gaceiiny’, 'YTikawis i oxopomis Gitsme’,
"Hesposynino . mope Opyme', iR HpOsopA HinoyTE0perni . DUMNENEYORNSUIRE. CcpeTEiN , ane T,
'MOPCHEQHY EOTCHC IIOC AHTATEN , ‘cepEicont , Gyo ceperiv, i axock AHEHO ', 'me MoERe mMaTOWiE MopcriEx , [HiNTpEIE

FpemETm RapTE |, - xa , mapomiy, 'Tyxe safindTe . nosipre, 'Sinpme | HiE EimmowmEaom ) 20

Most influencial phrases for rating of 4.0

Lime results - ('oScuyrosysans cepenne ane s, 'wuas Gpymsuii Bonopocti Be', 'xaii A 5 nanicTany’, 'He scTEraTs SERANON
OO, permuxT Doponna HyIna Mysixs', [HyEE SHCTE NDOCTID BARFOH. (OPONIHH KTy ORHL OYRMHOR ane . 'ma MOpi TacoM
piss, "Sies KomTyRan croix sTpar’, EOOMiANIySHRE O\ aS KORTEH , GSHKa KA KOO TiTHKE, ‘TiE 5 5api A0SE0TATS

"3POSYMLUIN IO e OpaEHEEe ., '0OHOTO 5 JaceHRIE aicoe', 'I oy 5 mmosy') 15

Attention results : (Hie CMa%RY .. TpxOEpan: . Ea TepHTOpIT, ', BoIopocti He NpEGHpATE), 'S0BCIM He rolaTsca ., [KOPOMEE
FiSToSHmoR BAMOpI, 7 BLIBITVIO Deit KTyS , ‘BENPAEAATE PIBEHD CEPEICY ., 'WEPTEH SaIATATE M KEETOX, '( mestomr —
Tapaconska’, TUHOC CepEic moripmryeTecx |, ' & G OMiEKE, 'N0Bro . faraTo momed, 'HABKOTO £ BOIOPOCTI |, 'HE Ka HaNe#sHOMY
pisei|, ‘monepeny me Garato poory., . BETHRA RUTBRICTE HAHAHOR . &axTHE] . ate Sacein, [TARINOL M ROpOIT Hafc: .
[GHiEEE e e e H00pe. ‘nasHCE | Axi npExoATs) 20

Most influencial phrases for rating of 5.0

Lime results - (maitsumony piser saSoponeno =, [peMHitie CHORGOANSER 1 SUIHIORAROGA (i Ta}OT0 MICHA BITGREEE |
penaxcy me mpueLx’, 'memai 2017 poky mesnonr', ‘odilianTs Ha 15ii JocTABHME, ' NOIKAE ¥ NI, [HPOCTOIORHES HARRPATI
'i6ina B oxeci ue'. 'NepConan NOBHICTIO FTPATHE SIATHICTE, 'K i cix Gyao’, [APHTONOMITTHEE MICHE HABIOPI , 'CTam: HOCHTH
acrpari Eyprew, [FEHOMEHAYE0 He MIGHE e, TpHIeTing 3 yeiel gopors) 15

Attention results - ((CEpEICETASI T . SaNHIATS GARATH EPATOTG ., "picHi . 3a60ponenc Eisa”, . 0fCMyTOBYEAHET cepenHe |, '+,
amocdepa -, ‘KoMGOPTY Ta eneranTEOCTI Micu', . e SETHINSG i, amMocpepa sopy i penakcy’, .  TapATe Depenosina,

[ eiiGiiesayi0 mei sinninars ., [Ffepconan wyon ., semvesi nocTanosyy , v, HAGGHORMISCA Iy SHIOR0 | SYBOREE Tra .
EPYTI Moy, “Elan uepes Mif asiarcei’, [00pENPOESCTE TAAIGAC . KpYTASTMOCHERE - ', TepeI0aTANOTE INTIONT 1 MATpAI,
‘BRCTYTTH , KPACHE TARIGOPRETE, ‘001 miftcrsit maTssH xErTor) 20|

Figure B.6 — Key-phrases retrieval example for restaurant
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Appendix C (required)

Excerpt from the protocol of the competition commission
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Appendix E (required)

Code for data collection and processing, model training and inference

import bs4

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import requests

from multiprocessing.pool import ThreadPool

from tgdm import tgdm

import time

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import Select

from selenium.common.exceptions import ElementClickInterceptedException,
StaleElementReferenceException

import os

from random user agent.user agent import UserAgent

from random user agent.params import SoftwareName, OperatingSystem
from selenium.webdriver.support.uil import WebDriverWait

from selenium.webdriver.support import expected conditions as EC
import json

import pickle

import urllib

sns.set ()

from multiprocessing.pool import Pool
from contextlib import closing

def multiprocess func(main input, func, additional inputs=None,
gather func=None, to split=True, gather func_ args=None,
chunk size=100, n processes=8):
if not gather func args:
gather func args = []
if not additional inputs:
additional inputs = []
if not gather func:

gather func = lambda x: [z for i in x for z in 1i]
if to_split:
splitted = [(main input([i:i + chunk size], *additional inputs) if ad-
ditional inputs else main input[i:i + chunk size]\
for i in range(0, len(main_ input), chunk size)]
else:
splitted = [(i, *additional inputs) if additional inputs else i for i
in main_ input]
with closing(Pool (n_processes)) as p:

result = list(tgdm(p.imap (func, splitted),
total=len(splitted)))
return gather func(result, *gather func args)

# First level parsing

software names = [SoftwareName.CHROME.value]

operating systems = [OperatingSystem.LINUX.value, OperatingSystem.WIN-

DOWS.value, OperatingSystem.MACOS.value]

user agent rotator = UserAgent (software names=software names,
operating systems=operating systems,
limit=100)

main link = 'https://www.tripadvisor.ru/Hotels-g294473-Ukraine-Ho-

tels.html#LEAF GEO LIST'



123

main url = 'https://www.tripadvisor.ru/'

def parse sites(main_link, user agent rotator, max ex=100):
first button xpath = '//*[@id="component 7"]/div/button'
next page xpath = '//*[@id="taplc main pagination bar ho-
tels less links v2 0"]/div/div/div/span[2]'

user = user_ agent rotator.get random user agent ()
custom options = webdriver.ChromeOptions ()
custom options.add argument (f'user agent={user}')

driver = webdriver.Chrome (options=custom options)

driver.get (main_ link)

WebDriverWait (driver, 90).until (EC.presence of element located((By.XPATH,
first button xpath)))

driver.find element (by=By.XPATH, value=first button xpath).click()

pages = [driver.page source]
ex counter=0
while True:
try:
WebDriverWait (driver, 90).until (EC.presence of element lo-
cated((By.XPATH, next page xpath)))
driver.find element (by=By.XPATH, value=next page xpath).click()
ex counter = 0
except Exception as ex:
if not isinstance(ex, (StaleElementReferenceException, Ele-
mentClickInterceptedException)) :
print (ex)
break
else:
ex counter+=1

if ex counter>=max ex:
break
time.sleep(15)
pages.append (driver.page_ source)
driver.quit ()
return pages

def parse first 1lvl (page):
soup = bs4.BeautifulSoup (page)

to _save = []
for ui column in soup.find all('div', {'class':'ui column is-8 main col
allowEllipsis'}):
try:
bubble rating parsed = ui_column.find('a', {'data-
clicksource':'BubbleRating'})
to_save.append( (bubble rating parsed.get('alt'), bubble rat-
ing parsed.get('href'),
ui column.find('div', {'class':'listing ti-
tle'}) .text))
except:
pass
return to_save
pages = parse sites(main link, user agent rotator)

hotels df = pd.DataFrame (multiprocess func(pages, parse first 1vl,
gather func=None, to_split=False,
n _processes=8), columns=['rating', 'link', 'title'])



hotels df = hotels df.drop duplicates ()

hotels_df['link'] = hotels_df['link'].apply(lambda X: url-
lib.parse.urljoin (main url, x))

hotels df['title'] = hotels df['title'].apply(lambda x:
'L'ojoin(x.split ('.")[1:]) .strip())
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hotels df['rating'] = hotels df['rating'].apply(lambda x:

float (x.split ('of') [0].strip() .replace(',',"'.")))

hotels df['title'] = hotels df['title'].apply(lambda x: x.replace('/',"'\\"))
hotels df['parsed'] = False

hotels df.to csv('hotels links.csv', index=False)

import bs4

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import requests

from multiprocessing.pool import ThreadPool

from tgdm import tgdm

import time

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import Select

from selenium.common.exceptions import ElementClickInterceptedException,
StaleElementReferenceException

import os

from random user agent.user agent import UserAgent

from random user agent.params import SoftwareName, OperatingSystem
from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected conditions as EC
import json

import pickle

import urllib

from functools import partial

from selenium.webdriver.common.action chains import ActionChains
from random user agent.user agent import UserAgent

from random user agent.params import OperatingSystem, SoftwareName
import pyautogui

import threading

import multiprocessing

from selenium.webdriver.common.proxy import Proxy, ProxyType
sns.set ()

def augment link(link, num):
before link, after link = link.split('Reviews')
return before link+'Reviews-'+f'or{num*5}'+after link

import stem
from multiprocessing.pool import Pool

from contextlib import closing

def multiprocess_ func(main_input, func, additional inputs=None,

gather func=None, to split=True, gather func_args=None,

chunk size=100, n processes=8):
if not gather func args:
gather func args = []
if not additional inputs:
additional inputs = []
if not gather func:
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gather func = lambda x: [z for i1 in x for z in 1i]
if to split:
splitted = [(main input([i:i + chunk size], *additional inputs) if ad-
ditional inputs else main input[i:i + chunk size]\
for i in range(0, len(main_input), chunk size)]
else:
splitted = [(i, *additional inputs) if additional inputs else i for i
in main_ input]
with closing(Pool (n_processes)) as p:

result = list(tgdm(p.imap (func, splitted),
total=len(splitted)))
return gather func(result, *gather func args)

# Second level parsing with translate + selenium

hotels df = pd.read csv('hotels links.csv')

software names = [SoftwareName.CHROME.value]
operating systems = [OperatingSystem.LINUX, OperatingSystem.MACOS.value,
OperatingSystem.WINDOWS]

user agent rotator = UserAgent (software names=software names,
operating systems=operating systems, limit=ho-
tels df.shape[0]*2)

def save html (file, path):
with open (path+'.html', 'w') as f:
f.write(file)

def get driver (user agent, run headless=False):
custom options = webdriver.ChromeOptions ()
prox = "socksb5://localhost:9050"
custom options.add argument ('--proxy-server=%s' % prox)

if run headless:

custom options.add argument ('headless')
custom options.add argument ("lang=uk")
custom options.add argument ('--ignore-certificate-errors')
custom options.add argument ('--disable-dev-shm-usage')
custom options.add argument (f'user-agent={user agent}')
driver = webdriver.Chrome (options=custom options)
return driver

def check ip proxy(address):
options = webdriver.ChromeOptions ()
options.add argument ('--ignore-certificate-errors')
options.add argument ('headless')

prox = "socks5://localhost:9050"
options.add argument ('--proxy-server=%s' $ prox)
driver = webdriver.Chrome (options=options)

driver.get ('https://api.ipify.org/")
ip address = driver.find element (By.TAG NAME, "body").text
driver.quit ()

return ip address
def check change ip(address, default ip address, debug=False):

try:
ip_address = check ip proxy (address)



126

except:
ip address = None

if debug:
print (£'01d ip: {default ip address}, new ip : {ip_address}')

if default ip address!=ip address and ip_ address:
if debug:
print ('IPs are different')
return True
return False

def access denied check with address (address, url):
options = webdriver.ChromeOptions ()

options.add argument ('--ignore-certificate-errors')
options.add argument ('headless"')
prox = "socks5://localhost:9050"
options.add argument ('--proxy-server=%s' % prox)
driver = webdriver.Chrome (options=options)
try:

driver.get (url)
except:

driver.quit ()
return False

html = driver.page source
driver.quit ()
try:
return bs4.BeautifulSoup (html).find('head').title.text!="Access De-
nied’
except:

return True

def access denied check with page (html):
try:
return bs4.BeautifulSoup (html).find('head').title.text!="Access De-
nied’
except:
return True

def parse free proxies():
ips = []
url = 'https://free-proxy-list.net/"'
soup = bs4d4.BeautifulSoup (requests.get (url) .text)
for i in soup.find('table', {'class':'table table-striped table-bor-
dered'}) .find all('tr'):
found = i.find all('td'") [:2]
if found:
ip, port = found
ips.append (ip.text+':"'+port.text)
return ips

def wait and click by(driver, value, by, time sleep=15):

WebDriverWait (driver, time sleep) .until (EC.presence of element lo-
cated ((by, value)))

driver.find element (by=by, value=value) .click()

## chek proxy

from collections import Counter
from stem import Signal



from stem.control import Controller

default ip =

check ip proxy('")

## parsing itself

import os
import queue

ABS PATH =

if not os.path.exists (ABS_PATH) :

for

def

os.mkdir (ABS_PATH)

i in hotels df['title']:
dir path =

'trip advisor data hotels'

os.path.join (ABS PATH, i)

if not os.path.exists(dir path):

os.mkdir (dir path)

parse reviews(link, path, abs path, user agent,

parts scroll=8,
max_errors=50) :

# exception handling

passed = {'got initial link':
'see all languages'

passed['link'] = link

passed['hotel name'] = path

caught ex = None

# overall path
path to save =

sleep time list=None,

False,
False}

os.path.join(abs_path, path)

#check if there are already parsed pages

n _already parsed =
if n already parsed:
link =

# get driver
try:
driver =
except Exception as ex:
caught ex = ex

if caught ex:

passed['got initial link']
9999

passed['num overall'] =
passed['num parsed'] = 0
passed['exception'] =

return passed

# initial link getting
try:
driver.get (1link)
time.sleep (5)
except Exception as ex:

get driver (user agent,

len(os.listdir(path to save))

augment link(link, n_already parsed)

run_headless)

= False

caught ex

run_headless=True,

127



caught ex = ex

if caught ex:

passed['got initial link'] = False
passed['num overall'] = 9999
passed['num parsed'] = 0
passed|['exception'] = caught ex
return passed

else:
passed['got initial link'] = True

# check 1if access denied

if not access _denied check with page (driver.page source) :

caught ex = 'Access dnied'

if caught ex:

passed['got initial 1link'] = False
passed['num overall'] = 9999
passed['num parsed'] = 0
passed|['exception'] = caught ex

return passed

# see all languages

try:
wait and click by(driver, 'Qukvo', By.CLASS NAME, 30)
passed['see all languages'] = True
time.sleep (5)
except:
passed['see all languages'] = False
c =20
errors = 0

first page = None

while True:

passed['show more'] = False
passed['saved file'] = False
passed['next page'] = False
try:

# show more
wait and click by (driver,
time.sleep (2)

passed['show more'] = True
# if first page, then save
if ¢ ==

first page = driver.pa

# save to txt

save _html (driver.page source, os.path.join(path to_ save,

f'page {str(n_already parsed+c)}'))
time.sleep (1)

'Ignyf', By.CLASS NAME, 30)

it

ge_source

passed['saved file'] = True

c +=1

# next page

WebDriverWait (driver, 30) .until (EC.presence of element lo-

cated((By.CLASS NAME, 'ui button.nav.next')))
button el = driver.find element (by=By.CLASS NAME, value='ui but-

ton.nav.next')
if button el.is enabled()

and button el.is displayed() :
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button _el.click()

else:

break
passed['next page'] = True
errors = 0

except Exception as ex:
if not isinstance(ex, (StaleElementReferenceException, Ele-
mentClickInterceptedException)) :
caught ex = ex
break
else:
errors+=1
if errors>=max _errors:
break

finally:
time.sleep (np.random.choice (sleep time list))

driver.quit ()

if not caught ex:
passed = dict ([ (k, True) for k in passed.keys()])

try:
passed['num overall'] = int(bs4.BeautifulSoup (first page) \
.find all('span', {'data-test-target':
'"CC_TAB Reviews LABEL'}) [0] \

.find('span', {'class': 'iypZC Mc R
b'}) .text)
passed['got overall num'] = True
except:
passed['got overall num'] = False
passed['num overall'] = 0
passed['num parsed'] = 5 * (n_already parsed+c)
passed['exception'] = caught ex
return passed
n _threads = 8
headless = True
sleep time list = list(range(3,15))
parse_reviews partial = partial (parse reviews,

run_headless=headless,
sleep time list=sleep time list,
abs path=ABS PATH)

user agents = [user agent rotator.get random user agent() for i in range (ho-
tels df.shape[0])]

sub_df = hotels df[hotels df['parsed']==False]
input tuples = list(zip(sub_df['link'].values.tolist(), sub df['title'].val-
ues.tolist (), user_agents))

batch size = 100
sleep between batches time = [120, 180, 300, 600]

batched input tuples = [input tuples[i:it+batch size] for i in range (0,
len (input tuples)+batch size, batch size)]
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def parse reviews multiprocessing(input tuple):

link, path, user agent = input tuple

passed dict = parse reviews partial (link, path=path,
user agent=user agent)

return passed dict

for batch in batched input tuples:
with closing(ThreadPool (n_threads)) as p:
results = list(tgdm(p.imap (parse reviews multiprocessing, batch), to-
tal=len (batch)))

mask passed = dict([(i['link'], i['num parsed']/(i['num overall']+1)>0.8)
for 1 in results])

hotels df.locl[hotels df['parsed']==False, 'parsed'] = hotels df.loc[ho-
tels df['parsed']==False, 'link']\

.apply(lambda x: mask passed.get (x, False))
time.sleep (np.random.choice (sleep between batches time))

hotels df['parsed'].value counts ()

hotels df.to _csv('hotels links.csv', index=False)

import bs4

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import requests

from multiprocessing.pool import ThreadPool

from tgdm import tgdm

import time

from selenium import webdriver

from selenium.webdriver.common.by import By

from selenium.webdriver.support.ui import Select

from selenium.common.exceptions import ElementClickInterceptedException,
StaleElementReferenceException

import os

from random user agent.user agent import UserAgent

from random user agent.params import SoftwareName, OperatingSystem
from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected conditions as EC
import json

import pickle

import urllib

sns.set ()

from multiprocessing.pool import Pool
from contextlib import closing

from functools import partial

def multiprocess_ func(main_input, func, additional inputs=None,
gather func=None, to split=True, gather func args=None,
chunk size=100, n processes=8):
if not gather func args:
gather func args = []
if not additional inputs:
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additional inputs = []
if not gather func:

gather func = lambda x: [z for i1 in x for z in 1i]
if to_split:
splitted = [(main_input[i:i + chunk size], *additional inputs) if ad-

ditional inputs else main input[i:i + chunk size]\
for i in range(0, len(main input), chunk size)]
else:
splitted = [(i, *additional inputs) if additional inputs else i for i
in main_ input]
with closing(Pool (n_processes)) as p:
result = list(tgdm(p.imap (func, splitted),
total=len(splitted)))
return gather func(result, *gather func args)

def process buble (x):
return float('.'.join(x))

def bs4 parse reviews (input tuple):
page to parse, hotel name = input tuple
records = []
try:
for review page in bs4.BeautifulSoup (page to parse).find all('div',
{'class':'"WAllg T'}):

record = {}
record['overall rating'] = process buble (re-
view page.find('div', {'data-test-target':'review-rating'})\

.span['class'] [-1].split (' ") [-11)
per type bubble = review page.find all('div', {'class':'hemdC S2

H2 WWOoy'})

if per type bubble:

for j in per type bubble:
record[j.text+' rating'] = process bu-

ble(j.span.span['class'] [-1].split (' ") [-11)

record['review'] = review page.find('div', {'class':'fIrGe
_T'}) .text

record['hotel name'] = hotel name

records.append (record)
except Exception as ex:
print (ex)

return records

def read file(path):
with open(path, 'r') as f:
return f.read()

def parse reviews multiproc(name, abs path):
path = os.path.join(abs path, name)
records = []
for path page in os.listdir (path):
page = read file(os.path.join(path,path page))
records.extend(bs4 parse reviews ((page, name)))
return records

ABS PATH = 'trip advisor data hotels'

hotels df = pd.read csv('hotels links.csv')
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hotels to load = hotels df[hotels df['parsed']==True] ['title'].val-
ues.tolist ()

partial parse reviews multiproc = partial (parse reviews multiproc,
abs path=ABS PATH)

reviews = multiprocess func([i for i1 in os.listdir (ABS PATH) if not i.starts-
with('.")1,
func=partial parse reviews multiproc,
to split=False,
n _processes=8)

reviews pd.DataFrame (reviews)

reviews reviews.drop duplicates(['review', 'hotel name'])
reviews.head ()

reviews.shape

reviews['overall rating'].value counts () .plot.bar()

reviews['overall rating'].value counts ()

reviews.isna () .sum()

reviews[reviews['overall rating']==3.0].sample() ['review'].values[0]

reviews.to csv('hotel reviews.csv', index=False)

import os

import pandas as pd

import gc

from multiprocessing.pool import Pool
from contextlib import closing

from tgdm import tgdm

def multiprocess_ func(main_ input, func, additional inputs=None,
gather func=None, to split=True, gather func_ args=None,
chunk size=100, n processes=8):
if not gather func args:
gather func args = []
if not additional inputs:
additional inputs = []
if not gather func:

gather func = lambda x: [z for i in x for z in 1i]
if to split:
splitted = [(main_input[i:i + chunk size], *additional inputs) if ad-

ditional inputs else main input[i:i + chunk size]\
for i in range(0, len(main_input), chunk size)]

else:
splitted = [(i, *additional inputs) if additional inputs else i for i
in main_input]
with closing(Pool (n_processes)) as p:

result = list(tgdm(p.imap (func, splitted),
total=len(splitted)))
return gather func(result, *gather func_ args)

path = '../../../data_reviews/'
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# Merging the data

dfl = pd.read csv(os.path.join(path, 'rozetka ukr.csv'), encoding='windows-
1251°',

sep="';")
dfl.shape
dfl['entity name'] = dfl['prod link'].apply(lambda x: x.split('/"')[-3])
dfl = dfl[['comment', 'translate', 'rating', 'entity name']]\
.rename (columns={'comment':'review', 'translate':'review translate'})
dfl['dataset name'] = 'rozetka'
df2 = pd.read csv(os.path.join(path, 'rozetka ru.csv'), encoding='windows-
1251"',

sep="';")
df2.shape

df2 = df2[~df2['prod link'].isna()]

df2['entity name'] = df2['prod link'].apply(lambda x: x.split('/')[-3])
df2 = df2[['comment', 'translate', 'rating', 'entity name']]\
.rename (columns={'comment':'review', 'translate':'review translate'})
df2['dataset name'] = 'rozetka'
df3 = pd.read csv(os.path.join(path, 'hotels final.csv'), encoding='windows-
1251"',
sep=";")
df3.shape
df3 = df3.rename (columns={'hotel name':'entity name'})
df3 = df3[['review', 'translate', 'overall rating', 'entity name']]\
.rename (columns={'overall rating' : 'rating', 'translate':'review trans-
late'})
df3['dataset name'] = 'tripadvisor hotels ukraine'
df4 = pd.read csv(os.path.join(path, 'restaurants review final.csv'), encod-
ing='windows-1251",
sep=";")
df4.shape
df4 = df4.rename (columns={'name':'entity name'})
df4 = df4.rename (columns={'overall rating' : 'rating'}) [['review', 'ti-

tle translate', 'review translate', 'rating',
'entity name']]
df4['dataset name'] = 'tripadvisor restaurants ukraine'
df = pd.concat ([dfl, df2, df3, df4], axis=0)
df.head ()

del dfl, df2, df3, df4;
gc.collect ()

df = df[~df['rating'].isna()]
df['title translate'] = df['title translate'].fillna('")

df = df[~df['review'].isna ()]
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df['translated'] = df['review']!=df['review translate']
df.isna () .sum()

df['translated'].value counts()

df.shape
df [df ['rating']==2].sample (1) [['review', 'review translate']].values
df ['entity name'] .nunique ()

# Basic data analysis

import nltk

import matplotlib.pyplot as plt
import seaborn as sns

import numpy as np

sns.set ()

from nltk.tokenize import sent tokenize

## Characters number

print ('Max number of characters in translated review : {}'.format (df['re-
view translate'].apply(len).max()))

print ('Min number of characters in translated review : {}'.format (df['re-
view translate'].apply(len).min()))

print ('Mean number of characters in translated review : {}'.format (df['re-
view translate'].apply(len).mean()))

print ('Median number of characters in translated review : {}'.format (df['re-
view translate'].apply(len).median()))

sns.distplot (np.logl0 (df['review translate'].apply(len)))

np.percentile (df['review translate'].apply(len), g=0.2)

##4# filter out those reviews which char len is an outlier

df = df[df['review translate'].apply(len)>np.percentile(df['review trans-
late'].apply(len), g=0.2)]

### find those reviews which have a lot less characters that real text

df['diff len'] = df['review'].apply(len)-df['review translate'].apply(len)
df = df[df['review translate']!='#ERROR!"']
df['diff len'] = df['diff len'].apply(abs)

sns.distplot (np.loglp(df['diff len']))
df = df[df['diff len']<200]
df [df['translated']==True] ['diff len'].max()

df = df.drop(columns=['diff len'])
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### deleting empty symbols

df['review translate'] = df['review translate'].str.strip()

df = df[df['review translate'].apply(lambda x: True if x else False)]

### remove \n char

df['translated'].value counts()

import re
def remove multy spaces (text):
try:
text = re.sub(r'\s+', ' ', text)
return text
except Exception as ex:
return None

df ['review translate'] = df['review translate'].str.replace('\n',
'"Y.str.strip()

def spacing between chars text (text):
text = list (text)
new_ text = []
for idx char in range(len(text)):
if not text[idx char].isalnum() and text[idx char]!="'" and
text[idx char]!="' ':
new text.append(' ')
new_ text.append(text[idx char])
new text.append (' ')
else:
new text.append(text[idx char])

return ''.Jjoin(new_ text) .strip()

df['review translate'] = multiprocess func(df['review translate'].values,
func=spacing between chars_ text,
gather func=lambda x: x,
to split=False)

df['review translate'] = multiprocess func(df['review translate'].values,
func=remove multy spaces,
gather func=lambda x: x,
to_split=False)

df['review translate'].values[0]

## Sentence number

sent tokenized = multiprocess func(df['review translate'].values,
func=sent tokenize,
gather func=lambda x: x,
to_split=False)

sns.distplot (np.loglO([len(i) for i in sent tokenized]))

df['review translate sentences'] = sent tokenized

# Delete those which are partially translated



import fasttext
from itertools import chain

model = fasttext.load model('../../../1id.176.bin")

def detect lang sentences (batched texts, model):
result = []
for texts in tgdm(batched texts):
lengths = [len(i) for i in texts]
sentences = list(chain(*texts))
predicted langs, _ = model.predict (sentences)
predicted langs = list(map(lambda x: x[0].split(
dicted langs))
assert sum(lengths)==len (sentences)
assert len(predicted langs)==len(sentences)
batched langs = []
start = 0
end = lengths|[0]
for i in lengths([1l:]:
to _add = predicted langs[start:end]
if not to_add:
break
batched langs.append(to_add)
start = end
end = end+i

") [-1], pre-

A}

if predicted langs[start:end]:

batched langs.append(predicted langs[start:end])
assert [len(i) for i in batched langs]==lengths
result.extend (batched langs)

return result

def detect lang(batched texts, model):
result = []
for texts in tgdm(batched texts):
predicted langs, = model.predict(list (texts))
result.extend (list (map (lambda x: x[0].split(
dicted langs)))

") [-1]1, pre-

return result

batch size=100

to detect lang = df.locl[df['translated']==True, 'review translate sentenc-
es'].values

batches = [to detect lang[i:i+batch size] for i in range(0, len(to_ de-
tect lang), batch size)]

sum([len(i) for i in batches])

result = detect lang sentences (batches, model)

batch size=100

to detect lang = df.loc[df['translated']==True, 'review translate'].values
batches = [to _detect lang[i:i+batch size] for i in range(0, len(to_de-
tect lang), batch size)]

result = detect lang(batches, model)

df['language translated'] = 'uk'
df.loc[df['translated']==True, 'language translated'] = result

136
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df = df[df['language translated']=='uk']

df .drop (columns="'language translated',6 inplace=True)

# Tokenize texts

from nltk.tokenize import regexp tokenize

def NLTK special chars excluded tokenizer (input text):

overall pattern = r"[\w'-]+|["\w\s'-]+"

return regexp tokenize (input text, pattern=overall pattern, gaps=False,
discard empty=True)

def tokenize sentence tokens (sentences):
tokens = []
for sent in sentences:
tokens.append (NLTK special chars_ excluded tokenizer (sent))
return tokens

df ['review translate sentences tokens'] = multiprocess func(df['review trans-
late sentences'].values,

func=tokenize sentence tokens,

gather func=lambda x: x,

to_split=False)

# Add spaces between chars

o°

# %
from functools import partial

=
o\

def apply func sent (sentences, func):

result = []

for sent in sentences:
result.append (func (sent))

return result

#
def spacing between chars tokens (tokens):

tokens = list (np.hstack([spacing between chars (i) for i in tokens]))
return [i for i in tokens if 1i]

o°
o°

#
def spacing between chars (text):
text = list (text)
new_ text = []
for idx char in range(len(text)):
if not text[idx char].isalnum() and text[idx char]!="'":
new text.append (' ')
new text.append(text[idx char])
new text.append(' ')
else:
new_text.append(text[idx char])

oe

e
°

return ''.join(new_ text) .strip().split(' ')

# %%
spacing between chars sentences = partial (apply func sent, func=spacing be-
tween chars tokens)
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# %
df ['review translate sentences tokens'] = multiprocess func(df['review trans-
late sentences tokens'].values,

func=spacing between chars sentences,

gather func=lambda x: x,

to split=False)

# %

o°

# Find pos tags

%%

import pymorphy2

%%

morph = pymorphy2.MorphAnalyzer (lang="uk')

o\
o\

#
def pos tagging(ent):
batch, morph = ent
tags _batch = []
for sentences in batch:
tags_sentences = []
for sentence in sentences:
tags sentences.append([morph.parse (word) [0] .tag. POS for word in
sentencel])
tags batch.append(tags_sentences)
return tags_batch

# %
df ['review translate sentences pos'] = multiprocess func(df['review trans-
late sentences tokens'].values,

func=pos_tagging,

gather func=None,

to_split=True,

chunk size=100,

n_processes=12,

additional inputs=[morph])

%

o°

# Find lemmas

#
def lemmatizing (ent) :
batch, morph = ent
tags_batch = []
for sentences in batch:
tags_sentences = []
for sentence in sentences:
tags sentences.append ([morph.parse (word) [0] .normal form for word
in sentencel])
tags_batch.append(tags_sentences)
return tags batch

oe

o
°

- o0

%
df ['review translate sentences lemma'] = multiprocess func(df['review trans-
late sentences tokens'].values,

func=lemmatizing,

gather func=None,

to_split=True,

chunk size=100,
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n_processes=12,
additional inputs=[morph])

4=
oe
oe

df .head (1)

%

o°

# Delete plain questions

#
def is question sentences (ent) :
sentences, tags = ent
is _question vector = []
for i in range(len(sentences)):
is question vector.append(is_question(sentences[i], tags[i]))
return is question vector

o°
o°

#
def is question(words, tags):
tags = [tag for word, tag in list(zip(words, tags))\
if not word in ['.', ', ', '"!', '?']]

o\
o\

# Check if the last character of the sentence is a question mark

if words[-1] == "?" and len(tags)>1l:
# Check if the sentence ends with a verb or an auxiliary verb
if tags[-1] in ["VERB", "INFN"] or (tags[-1] == "GRND" and tags[-2]

in ["VERB", "INEN"]):
return True
# Check if the sentence starts with an auxiliary verb and ends with a

verb
elif tags[0] == "PRCL" and tags[-1] in ["VERB", "INFN"]:
return True
else:
return False
elif words[-1]=='?' and len(tags)==
return True
else:
return False
# %%
to input = list(zip(df['review translate sentences tokens'].values.tolist(),
df['review translate sentences pos'].values.tolist()))
# %%
questions mask = multiprocess_ func(to_ input,
func=is question sentences,
gather func=lambda x: x,
to_split=False,
n_processes=12,
)
# %%
df['is _question'] = questions mask
# %%
df = df[~df['is question'].apply(lambda x: all(x))]
# %%

df.to_csv('processed data.csv', index=False)
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# %%

'pip install tokenizers

import tensorflow as tf

from tokenizers import Tokenizer, models, pre tokenizers, trainers, Regex
import tokenizers

import pandas as pd

#

model name = 'deep lstm attention w2v huber'

oe
oe

o°

# %

# Load data

# %%
df = pd.read csv('/home/user/files for research Vova/processed data.csv',\
usecols=['review translate',
'dataset name',
'rating',
'translated'])
# %%
df.head ()
# %%
subsets = pd.read csv('/home/user/files for research Vova/train val test in-
dices.csv')
# %%
subsets.head()
# %%
subsets = subsets.merge (df[['dataset name', 'translated']], left on='index',
right index=True)
# %%
# Filter data
mmon
# %%
bad indices = pd.read csv('/home/user/files for re-
search Vova/files to check.csv')
# %%
subsets = subsets[~subsets.index.isin(bad indices['id'].values)]
# %%
df = df[~df.index.isin(bad indices['id'].values)]
# %%
df, subsets = df.reset index() .drop(columns='index'), subsets.reset in-
dex () .drop (columns="index")
# %%

# Load tokenizer

=
oe
oe
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tokenizer = Tokenizer (models.BPE.from file(vocab='/home/user/files for re-
search Vova/tokenizer 30k.json',
merges='/home/user/files for research Vova/merges tokenizer.txt',
end of word suffix='</w>"))
tokenizer.pre tokenizer = pre tokenizers.Split (Regex (r"[\w'-]+|["\w\s'-
1+"), "removed', True)

%

o°

# Encode text

# %
import seaborn as sns
import numpy as np

o°

# %%

sns.set ()

# %%

df ['review translate'] = df['review translate'].str.lower ()

# %%

df['encoded'] = tokenizer.encode batch(df['review translate'].values)
# %%

df['encoded'] = df['encoded'].apply(lambda x: x.ids)

# %%

sns.distplot (np.logl0 (df['encoded'].apply(len)))

# %
np.percentile (df['encoded'] .apply(len), 99)

o°

# %%

encoded tokens = df['encoded'].values

rom itertools import chain

=
o°
o°

padded tokens = tf.keras.preprocessing.sequence\
.pad_sequences (encoded_tokens, maxlen=300, padding="post")

# %%
padded tokens.shape

o
°

o

# Get embeddings

'pip install gensim

#
def load w2vec(path, vocab, embed dim=300, glove backup={}):

vectors = gensim.models.KeyedVectors.load word2vec format (path, bi-
nary=True)

emb matrix = np.zeros(shape = (len(vocab) + 1, embed dim))
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missed = 0
for word, idx in vocab.items () :
if 1idx!=0:
try:
emb matrix[idx,:] = vectors[word]
except KeyError:
if glove backup:
try:
emb matrix[idx,:] = glove backup[word]
except:
missed+=1
else:
missed+=1
print (f'Missed words : {missed}')
return emb matrix, vectors

#
emb matrix, vectors = load w2vec('/home/user/files for research Vova/embed-
dings w2v.bin',

o
o°

tokenizer.get vocab())

%

o°

# Get labels and split data

# %%

mapping = dict([(i,c) for c,i in enumerate(df['rating'].unique())])
# %%

mapping

# %%

y = df['rating'] .map (mapping) .values

# %%

num classes = len(set(y))

# %%

train indices, val indices, test indices = subsets[sub-
sets['split']=="train'].index.tolist (), \
subsets[subsets['split']=="'val'].index.tolist(),\
subsets[subsets['split']=="test'].index.tolist ()

# %%

train y, val y, test y = yltrain indices], yl[val indices], yl[test indices]

# %%

train x, val x, test x = padded tokens[train indices], padded tokens[val in-
dices], \

padded tokens[test indices]

%%

train x.shape

e
°

oe

# Create model

#

class Attention(tf.keras.layers.Layer) :
def init (self,

oe
oe
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units=128, **kwargs):
super (Attention,self). init (**kwargs)
self.units = units

def build(self, input shape):
self.Wl=self.add weight (name='attention weights 1', shape=(in-
put shape[-1], self.units),
initializer="'glorot uniform', trainable=True)

self.W2=self.add weight (name='attention weights 2', shape=(1,
self.units),
initializer="glorot uniform', trainable=True)

super (Attention, self).build(input_ shape)

def call(self, x):
x = tf.transpose(x, perm=[0, 2, 1])
attention = tf.nn.softmax (tf.matmul (self.W2, tf.nn.tanh(tf.mat-
mul (self.Wl, x))))
weighted context = tf.reduce sum(x * attention, axis=-1)
return weighted context, attention

def get config(self):

config = super().get config() .copy ()
config.update ({
'units': self.units

})

return config

#
tf.keras.backend.clear session()

np.random.seed (0)

tf.random.set seed(0)

# define layers

attention = Attention(units=128, name='attention')

input layer = tf.keras.layers.Input (shape=(300,), name='input')

word embedding = tf.keras.layers.Embedding (input dim=tokenizer.get vo-
cab _size()+1,

o°
o°

output dim=300,
trainable=True,
name="'embedding’,
mask zero=True,
weights=[emb matrix])
batch norm = tf.keras.layers.LayerNormalization (axis=-1)
spatial dropout = tf.keras.layers.SpatialDropoutlD (0.3, name='spatial drop-
out')
lstml

tf.keras.layers.LSTM (256, name='lstml',
return sequences=True)
lstm2 = tf.keras.layers.LSTM (128, name='lstm2',
return_ sequences=True, return_state:True)

densel = tf.keras.layers.Dense (128, activation='relu', name='dense')
dropout = tf.keras.layers.Dropout (0.5, name='dropout')
logits layer = tf.keras.layers.Dense (num classes, activation='softmax',

name="output')

#actual flow

embedded = spatial dropout (word embedding (input layer))
Istm 1vll = lstml (embedded)

normed = batch norm(lstm 1vll)

context vector, state h, = lstm2(normed)
weighted context, attention scores = attention(context vector)
final attn output = tf.concat ([state h, weighted context], axis=1l)

x = densel (final attn output)



x = dropout (x)
x = logits layer (x)
model = tf.keras.Model (input layer, x)

# %

oe

# Compile model

#

oe
oe

model.compile (loss=tf.keras.losses.Huber(1.0), \
optimizer=tf.keras.optimizers.Adam(),

metrics=["'acc'])

# 3%

oe

# Early stopping

# %%
import operator
class EarlyStopping:

def init (self, tolerance=5, mode='min') :

assert mode in ['min', 'max'], 'Mode should be min or max'

self.mode = operator.lt if mode=='min' else operator.gt

self.tolerance = tolerance
self.counter = 0
self.early stop = False
self.extremum value = None
self.best model = None

@staticmethod
def copy model (model) :

copied model = tf.keras.models.clone model (model)
copied model.set weights (model.get weights())

return copied model

def call (self, val, model):
if self.extremum value is None:
self.extremum value = val

self.best model = self.copy model (model)

else:

if not self.mode(val, self.extremum value) :

self.counter+=1
else:

self.extremum value = val

self.best model = self.copy model (model)

self.counter = 0

if self.counter==self.tolerance:
self.early stop=True

# %

oe

# Train model

oe

# %
from sklearn.metrics import fl score

S

def evaluate on datasets(y true, y pred,
d={}

split='val'):

for dataset name in subsets['dataset name'].unique():

144
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idx = subsets[subsets['split']==split].copy()

idx['index'] = list(range (idx.shape[0]))

idx = idx[(idx['dataset name']==dataset name) ]\

['index'] .values.tolist ()

score = fl score(y true=y truel[idx], y pred=y pred[idx],
average='macro')

print (£'{split} fl score for dataset {dataset name} : {score}')

d[f'{split} fl {dataset name}'] = score

for flag in [True, False]:

idx = subsets[subsets|['split']==split].copy()

idx['index'] = list(range (idx.shape[0]))

idx = idx[idx['translated']==flag]['index'].values.tolist()
score = fl score(y true=y truel[idx], y pred=y pred[idx],

average='macro')
print (£'{split} f1 score for translated=={flag} : {score}')
d[f'{split} fl translated=={flag}'] = score
return d

#
def update history(history, d):
for key, value in d.items():
res = history.get (key, [1)
res.append(value)
historyl[key] = res

o\
o\

# %%

early stopping = EarlyStopping (mode='max', tolerance=4)

#
def training loop (model, train x, train y, val x, val y, epochs=10,
batch size=128,

o\
o\

shuffle=True) :
dict history = {}
for i in range (epochs):
if shuffle and i==0:

indices = np.arange (len(train x))
np.random.shuffle (indices)
train x = train x[indices]
train y = train y[indices]

#train model
history = model.fit (train x,tf.one hot(train y,num classes), \
validation data=(val x,tf.one hot(val y,num clas-

ses)),
epochs=1, batch size=batch size,
verbose=0, shuffle=False)
train loss, val loss = history.history['loss'][-1], history.his-
tory['val loss'][-1]

#evaluate model

train prediction = np.argmax(model.predict (train x,
batch size=batch size), axis=-1)

val prediction = np.argmax (model.predict (val x,
batch size=batch size), axis=-1)

train fl = fl score(y true=train y, y pred=train prediction,
average='macro')
val fl = fl score(y true=val y, y pred=val prediction,

average='macro')

#printing evaluation

print (f'Epoch {i}"'")

print (f'Overall train fl : {train fl}, overall val fl: {val fl}'")
print (f'Train loss : {train loss}, val loss: {val loss}')



d train = evaluate on datasets(y true=train y,
tion, split='train')
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y_pred=train predic-

d val = evaluate on datasets(y true=val y, y pred=val prediction,

split='val')

if i!=epochs-1:
print ('-'*30)

fsave history
update history(dict history, d train)
update history(dict history, d val)

update history(dict history, {'train fl': train fl})

update history(dict history, {'train loss': train loss})

(
(
(
update history(dict history, {'val fl1': val fl})
(
(

update history(dict history, {'val loss': val loss})

fearly stopping

early stopping(val fl, model)

if early stopping.early stop:
print ('Stopping early')
model = early stopping.best model
break

return dict history, model

# %%
dict history, model = \
training loop (model, train x, train vy,
val x, val y, epochs=20, batch size=2048,

# %%

dict history

o\
o\

# Show charts

#
import seaborn as sns
import matplotlib.pyplot as plt

o\
o\

# %
def plot history(dict history, columns):
plt.figure(figsize=(12,8))
for i in columns:
to plot = dict historyl[i]
plt.plot(range(len(to_plot)), to plot, 'o-'")
plt.xticks (range(len(to plot)), range(len(to plot))
plt.xlabel ('Epochs')
plt.legend(columns)

# %%

plot history(dict history, ['val loss', 'train loss'])

# %%
plot history(dict history, ['val fl', 'train f1'])

o
°

oo

# Evaluate model

.
oo
oo

shuffle=True)

)
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test predictions = np.argmax(model.predict (test x, batch size=2048), axis=-1)

o°
o°

#

test fl = fl score(y true=test y, y pred=test predictions,
average='macro')

print (f'Overall test fl-score : {test fl}'")

#
test results = evaluate on datasets(y true=test y, y pred=test predic-
tions, split="test"')

o°
o°

%

o°

# Confusion matrix

# %%

inverse mapping = dict([(v,k) for k,v in mapping.items()])
# %%

from sklearn.metrics import confusion matrix

.
o\
o\

np.unique (test_vy)

# %%
matrix = confusion matrix(test y, test predictions)
matrix scaled = matrix.astype('float') / matrix.sum(axis=1l)[:, np.newaxis]

plt.figure(figsize=(14,10))
sns.heatmap (matrix scaled, annot=True, cmap=plt.cm.Blues, xticklabels=[in-
verse mapping[i] for i in np.unique(test y)],\

yticklabels=[inverse mapping[i] for i in np.unique (test y)])
plt.title('Confusion matrix')
plt.xlabel ('Predicted label')
plt.ylabel ('True label')

plt.show ()

# %%

test df = df[subsets['split']=="test'].copy()

# %5

test df['predicted rating'] = [inverse mapping[i] for i in test predictions]

oe
oe

# Save history results

#

history = pd.DataFrame (dict history)

for k,v in test results.items():
historyl[k] A

oe
oe

oe
oe

#
history['model'] = model name

# %%
history.to csv("/home/user/jupyter notebooks/Ukranian-SA/notebooks/train-
ing/training results filtered.csv", mode='a', header=None, index=None)

e
°

oe
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# Save model

#+ %%
model.save (f'/home/user/files for research Vova/{model name}.h5")

#

o°
o°
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Appendix F (required)

Plagiarism check protocol

[IPOTOKOJI _
IIEPEBIPKY KBAJII®IKALIIIHOI POBOTH
HA HASIBHICTb TEKCTOBUX 3AIIO3UYEHb

Hazga pO6OTHI P03D06Ka CHUCTCMH BU3HAYCHHI KIIIOYOBHX d)pa3 Y BiI[FVKaX
YKPaiHCbKOK) MOBOK 33 JOIMOMOTOI0 IITYYHOI'O iHTGJIGKTV

Tun pobotu: Maricrepcbka KBajidikaiiiiHa podoTa
(bJAP, MKP)

[Tinpozaun: kadbenpa ABToMaTH3AIll1 Ta IHTEAESKTYAIbHUX 1HGHOOPMAIIMHUX
TEXHOJIOT1H, (DaKVIIHLTET IHTEIEKTYAILHUX 1HGOPMAIIUHNUX TEXHOJIOTIHN Ta
aBTOMAaTH3aIll

(xadenpa, baxkyaprer)

IMoxa3uuku 3BiTy nmoaionocti Unicheck

OpuriraneHicTh 98.1% Cxoxicts 1.9%

AHati3 3BITy IOA10HOCTI (BIAMITUTH MOTPIOHE):

M 1. 3ano3uuenst, BUsiBjieHi y po6oTi, 0pOopMIIEHI KOPEKTHO 1 HE MICTATH O3HAK IUIariary.

(] 2. BusiBieHi y poOoTi 3a1o3uueHHs He MarOTh O3HAK IUIariaTy, ajne iX HaJMipHa KiTbKiCTh
BUKJIMKA€ CYMHIBH 111010 IIIHHOCTI pOOOTH 1 BIICYTHOCTI CAMOCTIMHOCTI il BUKOHAHHSI aBTOPOM.
PoOoty HampaBUTH Ha PO3IJIs]] €KCIIEPTHOT KOMICIT KadeapH.

[] 3. BusiieHi y poOOTi 3aro3uueHHs € HeTOOPOCOBICHUMH 1 MarOTh O3HAKH ILIariaty ta/abo B
Hill MICTATBHCSI HABMUCHI CIOTBOPEHHS TEKCTY, 1110 BKa3yOTh Ha CIPOOH MPUXOBYBaHHS
HE00POCOBICHUX 3aMI03UYEHb.

Oco0a, BiamoBiaIbHA 32 IEPEBIPKY Poman MACJII

(mignuc) (npi3Bu1e, iHiIiaMN)

O3HaifoMJieH1 3 MIOBHUM 3BITOM NOJ10HOCTI, SIKUW OyB 3reHEpOBAHUI CHCTEMOIO
Unicheck om0 po6otu.

ABTOp poboTH Bosnogumup KOBEHKO
(migmuc) (npi3Bue, iHiIiaMM)
KepiBHuk po6oTu [nona BOT'AY

(migmc) (mpi3BuIIe, iHiLiaIN)



