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ABSTRACT 

 

Kovenko V.A. Master’s qualification paper of a specialty 126 – Informational 

systems and technologies, curricula – Informational technologies of data and image 

analysis. Vinnytsia: VNTU, 2023. 149 p. 

In English language. Bibliography: 44 titles; fig.: 23; tabl.: 9. 

 In the work, a technology for key-phrases retrieval based on Ukrainian 

reviews data in a cross-domain setting is developed, models for sentiment analysis 

and reviews rating estimation are created. The emphasis is set on modelling in the 

setting of noisy and imbalanced data. 

Keywords: machine learning, artificial intelligence, explainable AI, sentiment 

analysis. 
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INTRODUCTION 

 

Relevance of the problem Recent advances in NLP sphere, which is primary 

relevant to neural network based approaches provided researches with a possibility 

to tackle large variety of difficult tasks (NER[1], NEL[2], QA[3], etc.) and pushed 

limits for machine text comprehension. Those technologies allow companies to 

transform unstructured text data to the structured output that is easier to understand 

and analyze. Text analysis is very much relevant to the B2B companies which are 

monitoring mass media towards specific businesses for the sake of analytical reports 

creation and business insights provision. One of the key features that is often in-

cluded in analytical reports is sentiment analysis w.r.t specific company and prede-

fined time range. Although sentiment analysis provides general insights about com-

pany’s well-being, it doesn’t address the question of causes that influenced such a 

result. The task relevant to extraction of the causes of sentiment is called Aspect-

Based Sentiment Analysis[4].  

Despite of the fact that pre-trained models for solving the task do exist, most 

of them are relevant only to one domain. What is more, open-source solutions to 

ASBA are mostly based on processing of English language and creation of a new 

labeled dataset requires much amount of time and lots of manual work. The task of 

ASBA is relevant to classifying sentiment towards identified aspects. If to unite task 

of ASBA and aspects identification, the overall task can be reformulated in the fol-

lowing manner: retrieve key aspects and classify them with respect to sentiment la-

bels. If to consider that overall sentiment of the sentence is a composite of aspects 

sentiments, the other reformulation of the task appears: retrieve key aspects that in-

fluenced predicted sentiment label the most. Other problem where such a formula-

tion is applicable is relevant to summarization of reviews relevant to specific entity 

based on extraction of key phrases that influenced explicit ratings. The only differ-

ence in formulation for this task is that instead of sentiment label, the retrieval is 

done towards rating.  



6 

Generally, the task can be formulated in an abstract way: retrieve key textual 

features that influenced predicted label the most.  

Actuality of the work lies in the new formulation of unsupervised ABSA task 

and solution to the problem of unsupervised key-phrases retrieval for Ukrainian lan-

guage. As it was already mentioned, most of the solutions to ABSA are mostly rel-

evant to English language, which makes it much harder to either find relevant da-

tasets or pretrained models for Ukrainian language. Same situation is observed when 

speaking about general sentiment analysis or reviews rating estimation. Taking into 

account the problem of reviews summarization, it’s important for summarization 

methods to pay attention to sarcasm, words order and other complex patterns in lan-

guage. Due to the subjectivity of reviews, it’s mandatory to use noise-robust meth-

ods, that learn to generalize and not overfit to the data. What is more, considering 

that textual data is completely human-generated, there could be many errors and 

typos in words, which would result in a big number of different tokens, that can 

influence model both during training and inference.  

A methodology relevant to solving highlighted problems is presented in this 

work.  The primal focus is set on processing of Ukrainian language and solving the 

task of key influential phrases extraction in the bounds of cross-domain reviews. The 

work showcases usage of deep-learning and classical machine learning algorithms 

to learn the conditional distribution of the data and application of explainable AI 

techniques to extract most influential textual features. The presented solution is 

cross-domain, adaptable to new data, easy to enhance and requires to store only 

model and tokenizer, which can also be used to estimate ratings for reviews.  As the 

part of work, a real-world dataset of Ukrainian reviews is collected, which can be 

used to further advance NLP sphere for Ukrainian language. Models that are used 

for extraction of key phrases, can also be utilized for sentiment analysis and reviews 

scores estimation. Big emphasis is set on thorough data preprocessing and experi-

mentations with techniques for tackling noisy data. 
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The purpose of the work is to develop a technology for key phrases retrieval 

which is more efficient than its analogs, is adaptive to unseen data and new domains 

and is more convenient for enhancements. 

The following problems should be solved to achieve a goal: 

1. Conduct analysis of existing methods and approaches to text classification, 

explainable Artificial Intelligence and key-phrases retrieval. 

2. Collect the reviews data for different domains. 

3. Analyze collected dataset, clean and process it. 

4. Choose, train and evaluate algorithms for estimating reviews score and sen-

timent. 

5. Choose explainable AI algorithms for key-phrases retrieval. 

6. Construct an algorithm for key-phrases retrieval and evaluate it towards 

different explainable AI algorithms. 

Research methods. The following research methods are used in the work: 

analysis, forecasting of results, modeling of the system, classification of existing 

entities, analysis of the development results and their adjustment, summarization of 

the performed works. 

The object of work are processes of information search, text classification, 

artificial intelligence explainablity and information retrieval for Ukrainian language. 

The subject of work are methods of information processing, deep learning ar-

chitectures for text classification, methods of convex optimization, approaches to 

explainable artificial intelligence.  

Scientific novelty lies in collection of a cross-domain dataset containing 

Ukrainian reviews; solving problem of reviews score estimation and sentiment anal-

ysis for Ukrainian language; solving problem of automatic key phrases retrieval and 

summarization for Ukrainian language. 

Practical value of the work lies in providing a ready-to-use technology for 

key-phrases retrieval for Ukrainian language in a cross-domain setting, models 

trained for sentiment analysis and reviews rating estimation and processed reviews 

dataset that can be utilized for in depth analysis or further modeling.  
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Approbation and publications of the work results. The research paper summa-

rizing the work on the 1st stage of the All-Ukrainian competition of student papers 

in artificial intelligence on October 16, 2023 (excerpt from the protocol of the com-

petition commission of VNTU dated October 16, 2023 is attached, appendix C) pre-

sented during MODS2023 conference and is awaited to be published in LNNS 

(“Lecture Notes in Networks Systems”) journal (appendix D). Codebase of module 

relevant to inference of final algorithm has been accepted for a copyright procedure 

at October 2023. 
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1 CURRENT STATE OF PROBLEM AND PREVIOUS WORK REVIEW 

 

It’s mandatory to analyze previous work that intersects with described method 

in order to prove the novelty of scientific discovery, identify weak and strong points, 

and choose approaches to build on and enhance.  

The presented approach to solving problem of key-phrases retrieval can be 

divided into two steps:  

Train a generalized discriminative model. In our case the input to the model 

is textual data and expected output is the correct probabilities for classes associated 

with data. 

Apply explainable AI techniques to make reverse-engineering and extract 

those phrases that contributed the most to final decision of the model.  

Thus, the aforementioned pipeline operates in two particular spheres: text classi-

fication and explainable AI. Nevertheless, approach to tackling the problem and for-

mulation is a novel one, several similar works exist. In this chapter, previous work 

relevant to text classification, explainable AI, aspects ranking and unsupervised 

ABSA is discussed. 

 

1.1 Problem analysis  

 

The task of key-phrases retrieval has many usages, including feedback sum-

marization, content analysis, market research and social media monitoring.  Speak-

ing of reviews summarization, the solution to the task gives an opportunity to rapidly 

understand pros and cons of specific entity, providing client with useful information 

that can help to enhance user-experience, and giving vendor an opportunity to im-

prove entities quality and understand the aspects which influenced the overall rating. 

Nevertheless, there are many solutions to the problem, most of them require lots of 

labeled data that is complicated to collect. Giving the fact that there are many dif-

ferent domains of reviews, the task becomes even more complicated. Finally, most 
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of solutions exist for English language, with little to zero research done for Ukrain-

ian one, which presents an obstacle for adopting the technology for Ukrainian re-

views data. A feasible solution to the highlighted task would require the following 

qualities: 

The solution should be cross-domain, meaning that approach should work 

well across multiple domains of reviews. Such quality would provide an opportunity 

to use same approach for multiple types of data simultaneously without a need for 

adopting to new domains, that could require more time and resources. Moreover, 

making a solution  

Convenience of adaptation to new domains. Although the aforementioned 

quality states that solution should be cross-domain, the one would want to finetune 

it to his/her own data or extend it to novel domains.  

Convenience of algorithm’s extension. Possibility to extend and enhance al-

gorithm is mandatory for adopting the solution to real world scenarios and incorpo-

rating it into the production pipeline.  

The solution should be lightweight and fast. This quality is mandatory for so-

lution incorporation and is tightly connected to convenience of algorithm’s exten-

sion. 

Finally, the solution should work with Ukrainian language. 

 

1.2 Primer on deep-learning for NLP 

 

1.2.1 Embeddings  

 

Embeddings layer is the basis for deep-learning based NLP and is defined as 

a relatively low-dimensional space into which the one can translate high-dimen-

sional vector. The logic behind embeddings is based on distributional hypothesis, 

which states that words with similar contexts tend to have similar meanings. By con-

text, the words and phrases are meant. Ideally, embeddings capture some of the se-
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mantics of the input by placing semantically similar inputs close together in the em-

bedding space. Embeddings are often trained using word co-occurrence statistics 

from large corpora. Words that frequently co-occur are assigned vectors that are 

close, reflecting their semantic proximity. Unlike traditional methods like one-hot 

encoding, which create discrete representations, embeddings place words in a con-

tinuous vector space. This continuity allows for more flexible and nuanced repre-

sentations of language. Through their ability to capture the underlying semantics of 

words, embeddings aid in improving generalization. This is especially helpful in sit-

uations when it's probable that some language use variants aren't covered by the 

training data. Based on the semantic information embedded in embeddings, the 

model is able to extend its understanding. Speaking of usage of embeddings inside 

deep learning architectures, they are often used to map unique words into vectors 

which are then processed by other layers of the network. Embeddings layer is often 

used in a transfer-learning setting:  

1. Embedding along with other layers is pretrained using unsupervised learn-

ing for language understanding or similar task. 

2. Pretrained embedding layer is incorporated into other models for solving 

downstream tasks. During this stage, embedding is either finetuned or frozen.  

Embeddings are used in many spheres of NLP and have many usages, includ-

ing: 

• Semantic similarity. Assessing the semantic similarity of words is one of 

the main uses of word embeddings. Close vectors in the high-dimensional space 

represent words with comparable meanings. 

• Word similarity and analogy. Operations like word analogy and similarity 

are made possible by embeddings. Consider the well-known scenario: king - man + 

woman = queen. These kinds of comparisons can be investigated in the vector space, 

demonstrating how embeddings can capture word associations. 

• Machine translation. By representing words or phrases in a source lan-

guage and transferring them to a target language, embeddings are essential to ma-

chine translation. This aids in keeping the meaning intact while translating. 
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• Named entity recognition (NER). Embeddings help NLP tasks like NER 

by allowing the model to comprehend the context and relationships between items 

by modeling entities in a continuous vector space. 

• Classification. For text classification tasks, embeddings—which capture 

semantic subtleties in word representations—are powerful features. Their capacity 

to gather contextual data expands the feature space and aids in the creation of clas-

sifiers that perform better. 

 

1.2.2 Convolution  

 

Convolutional layers are widely used in image processing and state-of-the-art 

computer vision models due to translation invariance. Convolutional layers can also 

be applied towards textual data. In this setting convolutional kernel “scans” the tex-

tual vector with a specific stride. Kernel size can be roughly referred as a number of 

unigrams that are aggregated together (n-grams), whereas number of filters is rele-

vant to number of different representations of aggregation (formula 1.1). 

 

(𝑓 ∗ 𝑔)(𝑖) =  ∑ 𝑔(𝑗) ∗ 𝑓(𝑖 − 𝑗)𝑀−1
𝑗=0  (1.1) 

 

where 𝑓 is the input sequence, 𝑔 is the filter or kernel, 𝑀 – lengths of sequence, 𝑗 – 

position withing filter or kernel. 

Convolutional layers are primarily used because of their capacity for local 

feature extraction. This refers to identifying patterns or characteristics within a lim-

ited context, like a small window of words, in the context of text. Convolutional 

layers utilize parameters sharing, which allows same set of weights to be applied 

across different positions in the input sequence. The sharing of parameters gives an 

opportunity to detect similar patterns at different locations, making the model more 

efficient. A certain amount of translation invariance is offered by convolutional lay-

ers. This indicates that regardless of a pattern's precise location within the input se-
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quence, the model is able to identify it. This is useful for capturing the same linguis-

tic patterns that appear at different places within a text. Convolutional layers are 

frequently used with pooling layers (like max pooling) to lower dimensionality and 

preserve the most important information. By highlighting the salient characteristics 

in a given area, pooling aids in the extraction of pertinent data. What is more, con-

volutional layers give an opportunity to apply multiple filters allowing for richer 

representation of text.   

 

1.2.3 LSTM 

 

Long-short-term-memory network, which is a successor of recurrent neural 

network is primarily used for fitting sequential data. LSTM is a successor of RNN 

(recurrent neural network) architecture. Given the fact that text is a sequential data 

by nature, LSTM if often used for tackling NLP tasks. As in vanilla RNN, the output 

from the previous step is fed as input to the current step.  LSTM enhances RNN by 

partially solving “vanishing” gradients problem. The intuition behind the LSTM ar-

chitecture is to create an additional module in a neural network that learns when to 

remember and when to forget pertinent information. LSTM introduced gate mecha-

nisms, that are constraining the information that is persevered inside the layer. In 

particular the following mechanisms are used:  

1. Forget gate. The forget gate decides which information needs attention and 

which can be ignored.  

2. Input gate. The input gate decides what relevant information can be added 

from the current step. 

3. Output gate finalizes the next hidden state. 

LSTMs are appropriate for tasks where understanding context over extended 

periods of time is critical because they are made to capture long-term dependencies 

in sequences. In order to solve problem of “exploding” gradients relevant to huge 

values of computed gradients, the gradient of LSTM is sometimes limited to prede-

fined maximal number. Because LSTMs can handle sequences of different lengths, 
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they are useful for a variety of applications, including time series analysis, speech 

recognition, and natural language processing. Schematic workflow of the LSTM 

layer is shown on figure 1.1. 

 

 

Figure 1.1 – Schematic workflow of LSTM layer 

 

1.2.4 Attention 

 

Attention mechanism is another core technology in the sphere of NLP. Defi-

nitely attention was mostly popularized by the paper of Vaswani et. al. [5], in which 

self-attention was introduced. Before the introduction of Transformers architecture, 

attention was applied to such tasks as machine translation[6], target sentiment anal-

ysis and others. The core of any attention is to compute “attention weights” that 

weight information w.r.t given context. Attention mechanism is often used to aggre-

gated output of LSTM hidden states in a non-linear way. The same aggregation can 

be used as an explainable AI mechanism, where attention weights can be interpreted 

as importance of each hidden state representation of input feature. If to consider 

classification task (in this case model reflects encoder architecture plus classification 

head), the attention can be defined by the following formula, where 𝑊1, 𝑊2 are 
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attention weights, ℎ - hidden states from LSTM, 𝑎 – attention weights, 𝑐 – weighted 

context (formula 1.2): 

 

a =  softmax(𝑊2⨂tanh (𝑊1⨂ℎ)) 

𝑐 = ℎ⨂𝑎                                    (1.2) 

 

1.2.5 Dropout 

 

Dropout presented by Hinton et.al [7] is a regularization technique used to pre-

vent neural networks from overfitting. By randomly deactivating (or "dropping out") 

a portion of neurons during training, dropout aims to prevent neurons from becoming 

unduly specialized and to encourage the network's generalization (figure 1.2) 

 

 

Figure 1.2 – Example of dropout regularization 

 

Dropout arbitrarily sets a portion of the neurons’ outputs to zero on each forward 

pass through the network. The probability of dropout is a hyperparameter. The drop-

out process is stochastic, meaning that each training iteration different neurons are 

dropped out. This introduces a form of noise during training process, which prevents 

the network from relying too heavily on any particular set of neurons. Usually, drop-

out is disabled during the inference or testing phase, and predictions are made using 
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the entire network. To compensate for the fact that more neurons were active during 

training, the weights of the neurons are scaled by the dropout probability. Since dif-

ferent subsets of neurons are active during each iteration, dropout can be understood 

as an ensemble learning process for neural networks. Better generalization is made 

possible by this ensemble effect. Dropout is especially useful while working with 

noisy data, providing an opportunity to reduce overfitting and increase generaliza-

tion. 

 

1.2.6 Spatial dropout 

 

Spatial dropout is a variant of the traditional dropout regularization technique that 

is specifically made for convolutional layers. Spatial dropout expands on the concept 

of traditional dropout by randomly eliminating entire channels or feature maps from 

the input during each forward pass. By adding noise at the feature map level, spatial 

dropout discourages overfitting and promotes the learning of more resilient features.  

When applied to word embeddings, spatial dropout can be conceptualized as a type 

of "whole-word dropout." By setting all of the word's embedding values to zero dur-

ing training, it eliminates entire words or tokens from the sequence as opposed to 

just individual elements. By dropping out entire words, spatial dropout encourages 

the model to learn more robust representations for words. It prevents the model from 

relying too heavily on specific words and helps in generalizing better to variations 

in the input data. 

 

1.2.7 Batch normalization 

 

Batch normalization is a technique to improve training stability and convergence 

by normalizing the input of each layer of neural network in a mini-batch. Batch nor-

malization works by first normalizing a layer's inputs, and then using learnable pa-

rameters to scale and shift the normalized values. Every feature in the mini-batch 
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goes through this procedure separately. Batch normalization works in the following 

way (figure 1.3): 

1. For each feature in the mini-batch, batch normalization normalizes the input 

to have zero mean and unit variance. This is done by subtracting the mean of the 

mini-batch and dividing by its standard deviation. 

2. The results are then scaled and shifted by learnable parameters which are 

learned through gradient descent and back propagation. 

3. The results of moving average for mean and standard deviation are updated 

within model. 

 

 

Figure 1.3 – Schematic description of computations performed by batch  

normalization 

 

During inference the information of moving average for mean and standard in-

formation is used for calculations. By scaling the data batch normalization helps 

mitigate issues related to vanishing or exploding gradients, enabling more stable and 

faster training of deep neural networks. Utilization of batch normalization effec-

tively reduces internal covariate shift, making the optimization landscape more con-

sistent across mini-batches. Batch normalization is especially useful in the context 

of cross-domain data, as normalizing the inputs within each mini-batch makes model 
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more robust to differences between domains and reduces domain specific covariate-

shift.  

 

1.2.8 Layer normalization 

 

Layer normalization is another technique which is used to normalize input on 

each layer of neural network. Layer normalization is often applied in recurrent neural 

networks and transformer architectures. In contrast to batch normalization, layer 

normalization normalizes the input along the feature dimension, typically applied 

independently to each example. Layer normalization works in the following way: 

1. Layer normalization normalizes data along the feature dimension. For each 

example in the mini-batch, normalization is applied independently across all fea-

tures. Formula is the same as in the case of batch normalization. 

2. Same as in the case of batch normalization, layer normalization utilizes two 

learnable parameters to scale and shift input data. 

Layer normalization reduces the dependency on batch statistics during train-

ing. Each example is normalized independently, making it less influenced by the 

statistics of the entire batch. In batch normalization, statistics are computed per mini-

batch during training, and a moving average is typically used during inference. In 

layer normalization, statistics are computed independently for each example during 

both training and inference. Considering the fact, that in many tasks relevant to NLP 

sphere, the sentences with varying length are utilized, using batch normalization 

would result in an uncertainty relevant to appropriate normalization constant. Thus, 

layer normalization is recommended for use w.r.t recurrent layers. 

 

 

 

 

 



19 

1.3 Primer on classical machine learning for NLP 

 

1.3.1 Logistic regression 

 

Logistic regression is a statistical method used for binary classification, by 

predicting the probability that an instance belongs to a specific class. Logistic re-

gression is trained by optimizing binary cross-entropy loss function. Logistic regres-

sion applies sigmoid function to map linear combination of input features to a value 

between 0 and 1, representing the probability of positive class (figure 1.4). 

 

 

Figure 1.4 – Schematic description of logistic regression 

 

In order to reduce overfitting, both L1 and L2 regularization can be used, with 

parameter 𝐶 influencing the strength of it. For logistic regression the normalization 

of input data is beneficial, as it both speed ups training and leads to better conver-

gence. Logistic regression assumes linear relationships between the features and log-

odds of the responsive variable. Even though logistic regression is mainly used for 

binary classification, there are possibilities of applying algorithm for multiclass clas-

sification. One of the choices for solving the problem is utilize “One-vs-Rest” strat-

egy. A binary classifier is trained for each class in the “OvR” strategy, treating it as 

the positive class and all other classes as the negative class. As a result, a set of 

binary classifiers is produced, one for every dataset class. An important benefit of 
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logistic regression is its interpretability, which helps to understand influence of fea-

tures towards particular class in the global sense.  

 

1.3.2 SVM 

 

Support vector machine (SVM) aims to find a hyperplane in a high-dimen-

sional space that best separates instances of different classes. SVM is often called 

maximum margin classifier. The margin is the distance between the hyperplane and 

the nearest instance from each class. SVM seeks to maximize this margin, providing 

better generalization to unseen data. Support vectors are the instances that lie closest 

to the hyperplane. These are the critical instances that influence the position and 

orientation of the hyperplane. The margin is computed based on the distance from 

the support vectors to the hyperplane. SVM has internal mechanism for dealing with 

overfitting. In real-world scenarios, data might not be perfectly separable, thus a 

“soft margin” is introduced. The regularization parameter 𝐶 controls the trade-off 

between maximizing the margin and allowing misclassification and is similar to the 

same parameter used in logistic regression. SVM allows usage of specific kernel 

functions, that make algorithm more flexible and provide an opportunity to learn 

non-linear relationships. Speaking of multiclass classification, “One-vs-All” strat-

egy can be applied. SVM is often used for text classification due to possibility of 

capturing non-linear relationships, which is essential for complex data. Although 

SVM is more robust to overfitting than logistic regression, its less interpretable, es-

pecially when using complex kernel functions.  

 

1.3.3 Gradient boosted trees 

 

Gradient boosted trees is an ensemble machine learning technique based on 

decision trees. The algorithm builds multiple decision trees sequentially, where each 

tree corrects the mistakes of the previous one. Each time a new tree is trained to the 

residual of algorithm and expected output on the previous stage. Basically, number 
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of trees inside ensemble can be referred as number of learning iterations and influ-

ences the complexity of resulting ensemble. The process begins with the creation of 

the first tree, that is called “base learner” on top which all the other trees are build. 

In case of gradient boosted trees, learning rate determines the contribution of each 

tree to the overall ensemble. Gradient boosted trees are optimized via gradient de-

scent. One of the advantages of the algorithm is relevant to the fact that scaling of 

data isn’t required, due to the fact decision trees inside gradient boosted ensemble 

make splits based on comparison of features at individual nodes. These splits are 

determined by finding the optimal thresholds for features that would allow to sepa-

rate data into different classes or values in the best possible way. The scaling of 

features doesn’t affect the order of aforementioned thresholds. Even though, gradi-

ent boosted trees is an ensemble method, it’s still very explainable. The one can 

analyze decision rules made by certain trees or get information of feature im-

portance, based on how often the feature leads to split. Like in the case with logistic 

regression, the internal explainability is a global one. In order to prevent overfitting, 

gradient boosted trees utilizes such tools as tree pruning and shrinkage. Tree pruning 

restricts the growth of individual trees, and shrinkage controls the contribution of 

each tree. GBT is often utilized while working with complex data and big number 

of features, thus making it a candidate for problem of text classification. 

 

1.4 Previous work analysis 

 

1.4.1 Text classification 

 

Recent research leverages plenty of methods for solving the tasks of classifi-

cation based on textual data. The approaches can be divided into two groups based 

on utilized algorithms: classical machine learning and deep learning ones. Classical 

machine learning algorithms require thorough data preprocessing, which often in-

cludes words normalization based on lemmatization or stemming; stop-words re-

moval and vectorization of data using TF-IDF[8]. Then processed features are used 
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as an input to a classifier, such as Gradient boosted trees[9], SVM[10] or Logistic 

Regression[11]. Nevertheless, such approaches are inferior to deep-learning ones in 

terms of accuracy, they are still utilized due to speed of training and inference and 

high interpretability.  

Utsha et al.[12] apply extreme gradient boosted trees along with TF-IDF to 

tackle the task of multiclass fake news detection; Das et al.[13] utilize classical ma-

chine learning models on the task of sentiment analysis, showing that TF-IDF text 

vectorization along with NWT (Next word negation) preprocessing step and SVM 

achieves pretty high accuracies w.r.t three datasets. There is also a tendency of using 

additional textual features such as POS (Part of speech) tags[14] or NER (Named 

entity recognition)[15] to boost performance of models.  

Other approaches suggest usage of word embeddings as a text vectorization 

method[16], however usage of embeddings make classical machine learning models 

less interpretable. 

Deep-learning based methods achieve state of the art results on many bench-

marks relevant to textual data input. Such methods work well especially when big 

data is available, as they tend to find hidden structures in text and generalize well. 

Embedding layer is a basis for deep-learning based approaches, as it’s used to map 

token identifiers to real value vectors. Embeddings allowed researchers to use trans-

fer-learning and leverage knowledge of models trained on big textual corpus for 

downstream tasks.  

Yoon Kim[17] applied convolutional neural network on top of Word2Vec em-

beddings for text classification. Each convolutional layer was applied to embeddings 

in parallel, where number of filters was relevant to n-gram size.  

Other approaches utilized more sophisticated models which are based on re-

currency. LSTM and its variations are widely used for text classification nowadays. 

Sachan et al.[18] used simple one-layer Bidirectional LSTM along with mixed ob-

jective for training to achieve state-of-the-art results on various datasets. At the same 

time many researchers tend to combine CNNs with LSTMs to enhance the perfor-

mance of overall model. Chunting Zhou et al.[19] proposes a C-LSTM, model which 
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applies one dimensional convolution right after embeddings layer to extract high-

level representations, which are then fed into LSTM layer, showing superior results 

w.r.t other methods.  

CNNs are also used right after LSTM layer, in order to aggregate and process 

hidden states in a non-linear way instead of just retrieving the last one. For instance, 

Peng Zhou et al.[20] utilize Bidirectional LSTM with two-dimensional CNN layers, 

which outperforms C-LSTM on five datasets. 

 Other researchers tend to aggregate hidden states from LSTM layer using at-

tention mechanism. Wang et al.[21] propose model which uses LSTM along with 

attention mechanism to tackle the problem of aspect-based sentiment analysis. The 

attention combines both hidden representations of sentence tokens and aspect em-

beddings to produce the final output vector which is then fed into classification layer.  

Recent research features approaches, based on transformers and self-attention, 

which are superior to others in cases when big datasets are available. Nevertheless, 

performance of such models is pretty stunning, they are way less explainable than 

those based on LSTMs and CNNs.  

 

1.4.2 Explainable AI for text classification  

 

Explainable AI is very important field, main goal of which is to interpret pre-

dictions made by machine learning models. Explainable AI techniques are often 

used to monitor performance of model w.r.t biases and promote end user trust. Ex-

plainable AI methods can be classified into three categories: Intrinsically Interpret-

able Method, and Model Agnostic Methods and Example-Based Explanations. One 

of the methods to achieve explainable AI is to use intrinsically explainable methods 

like logistic regression, decision trees and their ensembles. However, such explain-

ability comes with a cost of performance.  
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Attention mechanism can also be considered as an intrinsically explainable 

method, even though it only partially explains model’s results. While logistic regres-

sion and decision trees explain model’s decision globally, attention mechanism pro-

vides a local perspective.  

Model-agnostic methods separate explanation from a machine learning 

model, allowing it to be compatible with a variety of models. Model-agnostic 

method that is often used is surrogate-based explanations. The main idea of it is to 

train a simpler model on top of original model’s predictions and explain the simpler 

one, which is called a “surrogate”. Surrogate-based methods are also divided into 

global and local ones, as in the example regarding logistic regression and attention 

mechanism.  

One of the famous algorithms that is build on local explainability is LIME 

(Local Interpretable Model-Agnostic Explanations)[22]. LIME trains an inherently 

interpretable model on the new dataset constructed from the permutation of samples 

and corresponding predictions of the model. Trained “surrogate” model can be a 

good approximator of global behavior, it doesn’t provide a good approximation for 

a global one.  

Shapely is another local explanation method, which is based on game theory. 

Main idea behind the method is based on an assumption that each feature value is a 

player in a game and the prediction is an overall payout that is distributed among 

players.  

Example-Based explanations are mostly model-agnostic [23] and explain 

model predictions by selecting instances of the dataset and not by creating summar-

ies of features.  

There also exist approaches relevant to specifically analyzing neural networks 

outputs using gradient-based attribution methods [24]. However, Wang et.al [25] 

showed that gradient-based analysis of NLP models is manipulable, leaving a space 

for possible adversarial attacks.  
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1.4.3 Aspects ranking and unsupervised aspect-based sentiment analysis  

 

Several works similar to ours in terms of task exist. Aspect ranking is a pro-

cess of identifying important product aspects from online consumer reviews.  

Yu et. al[26] presented an approach which consisted of three steps: aspect 

identification, aspect sentiment classification and aspect ranking. Nevertheless, the 

approach seemed to be effective in comparison with methods of Hu et. al [27] and 

Wu et. al [28], it includes the estimation of parameters for three models (2 SVMs 

and parameters for Gaussian distribution), which is hard to adopt to new data and 

can be slow during inference. Approach was shown to work for English language. 

In comparison, our approach only needs to train model ones and then apply explain-

able AI techniques to identify important aspects w.r.t labels model was trained on. 

As it was already mentioned, our approach can be thought of as the instance of un-

supervised aspect-based sentiment analysis.   

Advantages: 

• Suppresses other methods of similar kind in terms of NDCG metric. 

• The proposed approach consists of several steps, which broadens number 

of possible usages, as each step can be used separately and be integrated into other 

applications. 

Disadvantages: 

• Can be computationally extensive, as it includes training of 3 parametric 

models: SVM for identifying frequent terms, SVM for aspects sentiment classifica-

tion and multivariate gaussian distribution for aspects ranking. 

• By utilizing 3 different parametric models, its complicated to enhance al-

gorithm. 

• Due to the aforementioned reason, the utilization of algorithm to new data 

becomes even more complex. 

• Lack of contextualization. 

Garcia-Pablos et.al [29] presented an unsupervised approach to aspect-based 

sentiment analysis, that utilized Word2Vec model to identify aspects and detect their 
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polarity. The authors operated in two domains in English: restaurants and laptops 

reviews. In order to get list of multiwords, the log-likelihood ratio was applied. To 

detect entity-attributes, Word2Vec model was utilized. Based on predefined seed 

words relevant to entities and attributes, the sentences were annotated with most 

similar entity-attribute pair. Then the polarity is computed by difference of similar-

ities between the word at hand a positive anchor word and word at hand and negative 

anchor word. Based on polarity of words, the sentences are labeled as either positive 

or negative. In comparison to aforementioned approach, the one presented in this 

work is more adaptable to new data and is aware of context. 

Advantages: 

• Fully unsupervised approach that builds on top of predefined dataset and 

pretrained Word2Vec model. 

• Easy to use, no need for additional modeling. 

Disadvantages: 

• Results are equal to the baseline or worser. 

• Lack of contextualization. 

• Approach is not convenient for adaptation to new data sources, as there is 

no option of handling out of vocabulary tokens. 

Hercig et.al [30] tackled the problem of unsupervised aspect-based sentiment 

analysis for Czech language, by breaking the task into 4 separate problems: aspect 

term extraction, aspect term polarity, aspect category extraction and aspect category 

polarity. The problems are tackled by training CRF (Conditional Random Fields) 

model for aspect term extraction, utilizing maximum entropy classifier for the task 

of aspect term polarity detection, using same type of classifier for identifying the 

category of aspects and their polarity. All the models operate in domain of hand-

crafted features. Once again, our approach can be easily adopted for unsupervised 

aspect-based sentiment analysis, has fewer number of steps and is much easier to 

use.  

Advantages: 

• Achieves pretty high f1 score (around 80% for all the tasks). 
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• The proposed approach consists of several steps, which broadens number 

of possible usages, as each step can be used separately and be integrated into other 

applications. 

Disadvantages: 

• Can be computationally extensive, as it includes training of 4 parametric 

models. 

• By utilizing 4 different parametric models, its complicated to enhance al-

gorithm. 

• Due to the aforementioned reason, the utilization of algorithm to new data 

becomes even more complex, as each time models should be retrained. 

• Lack of contextualization. 

So far, the most similar research to ours is the master’s thesis of Dmytro 

Bobenko [31]. In his work, the author tackled the problem of determining sentiment 

and most influential phrases for each review. The data was collected from TripAd-

visor and Booking websites, resulting into the dataset of 164k reviews. The author 

trained models for sentiment detection and used PMI (pointwise mutual information) 

to globally create dictionary of negative/positive phrases, which is then used to de-

termine most influential phrases for each classified review.  In comparison, the da-

taset collected in this work is cross-domain and is much bigger (662k reviews); the 

key phrases extraction works locally which makes it more contextualized and appli-

cable for new data; similarly to authors we used f1-score as a main metric, however 

due to imbalance nature of the data the “macro” averaging was applied in contrast 

to “weighted”, which assigns greater contribution to classes with more examples and 

is not representative of model performance w.r.t all the classes. Other differences 

are depicted further throughout the work.  

Advantages: 

• Approach operates in Ukrainian language and provides a model trained 

for sentiment classification, which can be used for further research. 

• Approach utilizes clustering of n-grams in order to get the most valuable.  
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Disadvantages: 

• Approach utilizes weighted f1-score which isn’t representative of class 

imbalance. 

• The approach works by utilizing predefined dictionary of positive and 

negative n-grams, which makes it harder to adopt it to new data and domains. 

• For model training the plain tokenization is used, which means that there 

is no way of handling OOV tokens and model is less memory and time efficient. 

• Approach operates only in one domain. 

• Lack of contextualization in terms of key-phrases retrieval. 

 

1.5 Conclusion 

 

In this chapter the discussion touches on the state of problem at hand, analysis 

of competitor approaches and technologies used for text classification.  

Recent advances in the sphere of NLP prior to text classification and explain-

able AI are analyzed.   The emphasis is set on mechanics of embeddings, convolution 

for textual data, long-short-term-memory network, infamous attention mechanism 

and methods for model regularization and stabilization. Also, the description of clas-

sical machine learning algorithm including logistic regression, gradient boosted 

trees and SVM was provided.  

The exhaustive analysis of similar works was provided, strong and week 

points of each were highlighted. So far, the most similar work to this one is of Dmy-

tro Bobenko. However, his approach operates only in one domain, is limited for 

adopting to new data and enhancements and doesn’t take context into account. 

That’s why there is a strong need in creation of a more universal approach towards 

key-phrases (aspects) extraction. 
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2 ANALYSIS OF TOOLS TO ACCOMPLISH THE TASK  

 

2.1 Analysis of word embeddings 

 

One of the popular methods for pretraining embeddings is Word2Vec pre-

sented by Mikolov et.al [32]. Word2Vec model has several regimes of training: 

Skip-gram and CBOW (continuous bag of words) (figure 2.1). 

 

 

Figure 2.1 – CBOW and Skip-gram architectures of Word2Vec 

 

 

Figure 2.2 – Geometrical representation of embeddings in terms of different  

aspects 
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As it can be seen from diagram above, CBOW method is order agnostic and 

tries to predict middle word based on summation of project word vectors relevant to 

left and right context, whereas Skip-gram does the inverse and thus doesn’t use any 

aggregation at projection stage. Such training allows to learn mathematical repre-

sentations which are similar for those words which are similar in terms of their con-

text (figure 1.2).   

Advantages of Word2Vec method: 

1. Efficiency: Word2Vec is efficient due to the usage of shallow neural net-

work, making it feasible to train on big corpora. 

2. Semantic relationships: Word2Vec captures relationships between words, 

allowing for meaningful vector arithmetic.  

3. Convenience of integration: it’s pretty easy to integrate learned Word2Vec 

embeddings into machine learning algorithm and leverage transfer learning. 

Disadvantages of Word2Vec method: 

1. Contextual information: Word2Vec ignores contextual information within 

a sentence.  

2. Out of vocabulary words handling: as Word2Vec learns fixed-size vectors 

for each word, it’s not possible to get vector representation for words that were miss-

ing in training corpora.  

fastText[34] is another method for acquiring word vectors, which is an exten-

sion of aforementioned Word2Vec method. fastText represents words as bags of 

character n-grams, enabling to handle morphological variations and unseen words 

more effectively. Also, working on the level of character n-grams helps to effectively 

handle suffixes and prefixes.  

Advantages of fastText method: 

1. Semantic relationships: fastText captures relationships in a way veery sim-

ilar to aforementioned method. 

2. Out of vocabulary words handling: due to usage of character n-grams, 

fastText model is capable of handing out of vocabulary words by summing or aver-

aging subwords vectors. 
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Disadvantages of fastText method: 

1. Contextual information: similar to Word2Vec, fastText ignores contextual 

information within a sentence.  

2. Increased complexity: due to the usage of character n-grams, number of 

tokens is increased, making training of the model more computationally expensive. 

Convenience of integration: it’s complicated to integrate fastText with all its 

features into other machine learning model. 

ELMO (Embeddings from Language model)[34] is a method for getting con-

textual embeddings of sentences and paragraphs. Contextual information plays a 

crucial role in shaping the meaning of words and phrases, allowing to achieve a 

deeper and more accurate understanding of language. The need for contextual infor-

mation comes from the problem of words ambiguity, which is relevant to same 

words having different meanings in different context. For instance, word “bank” 

could refer to a financial institution or the side of a river. ELMO applies bidirectional 

LSTM in order to generate the vector representation of the sentence. ELMO operates 

on character level, building embeddings of words based on characters that construct 

it. What is more, the model incorporates task-specific layers, which are added on top 

of the LSTM representation to adapt the embeddings to the particular requirements 

of the downstream task. It’s interesting that ELMO utilizes a weighted sum of layers 

to combine information from different layers of the bidirectional LSTM. 

Advantages of ELMO method: 

1. Contextual understanding: ELMO captures contextual information within 

sentence, allowing for accurate representation of words in the case of ambiguity. 

2. Out of vocabulary words handling: working on a character level, ELMO 

allows to handle out of vocabulary words. 

Disadvantages of ELMO method: 

1. Increased complexity: ELMO builds on top of multi-layer bidirectional 

LSTM, which increases complexity of the overall training and inference.  
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2. Convenience of integration: increased complexity of the algorithm directly 

influences convenience of its integration by making training on custom data compu-

tationally demanding. 

Based on conducted analysis, it was decided to use Word2Vec method, as it’s 

easy to pretrain it on custom dataset in a fast manner and it’s convenient in terms of 

integration and transfer learning.  

 

2.2 Analysis of tokenization and words normalization methods  

 

2.2.1 Lemmatization  

 

Lemmatization is one of the most common word normalization techniques 

applied in NLP. The lemmatization tries to reduce word to its root. It does so by 

removing inflections or variations to get to the base or dictionary form. Lemmatiza-

tion typically involves dictionary look-up to identify the correct lemma for a given 

word. This step requires access to a comprehensive dictionary or lexicon. Lemmati-

zation ensures that words share a common representation, facilitating more accurate 

analysis and understanding of textual data. Lemmatization often incorporates part-

of-speech tagging to disambiguate between homographs (words with the same 

spelling but different meanings) and determine the correct lemma based on the 

word's grammatical role. It’s worth mentioning that lemmatization is language de-

pendent, meaning that for different languages different lemmatizers should be used. 

This downside comes from the fact that lemmatization uses dictionary-based ap-

proach to reduce words to their dictionary forms. Also, as each language has its own 

structures and features, it’s complicated to create a universal approach that would 

work for each one. Lemmatization helps to reduce number of tokens (dimensionality 

reduction) and at the same time preserves their semantic meaning. Even though, 

lemmatization tend to enhance semantics of words, it can lead to loss of contextual 

information. Also, lemmatization is sensitive to context shift and might not capture 

the changing nuances and context-specific variations in language.  
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Advantages: 

• Reduces number of words by transforming them into the lemma. 

• Still preserves some semantics of words. 

Disadvantages: 

• Lemmaitization is language dependent. 

• Can’t handle OOV tokens, thus will not help much in a context of words 

with typos and errors, won’t probably result in huge dimensionality reduction for 

complicated and noisy textual data. 

• Could decrease contextualization. 

 

2.2.2 Stemming 

 

Stemming is another method for tokens normalization that is based on trans-

forming words into their roots. Stemming algorithms typically work by removing or 

replacing word suffixes or prefixes, based on a set of predefined rules or heuristics. 

Some common stemming algorithms include the Porter Stemmer, Lancaster Stem-

mer, and Snowball Stemmer.  Same as for lemmatization, stemming is language-

dependent. Stemming algorithms often rely on rule-based approaches, where rules 

are defined to capture common prefixes or suffixes that can be removed to obtain 

the stem. These rules are language-specific and need to be tailored to the linguistic 

characteristics of each language. The most common operation in stemming is suffix 

stripping, where suffixes are systematically removed to obtain the root form of a 

word. Stemming algorithms vary in aggressiveness. Aggressive stemmers aim for 

higher reductions but may risk over-stemming, while conservative stemmers priori-

tize retaining more linguistic specificity. There also exist more advanced approaches 

for stemming that are based on machine learning and address some challenges, 

which commonly exist in traditional rule-based methods. 
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Advantages: 

• Reduces number of words by transforming them to their root. Possibly 

should result in even greater reduction in number of unique tokens then lemmatiza-

tion. 

• Computationally less expensive than lemmatization. 

Disadvantages: 

• Stemming is language dependent. 

• Might produce incorrect stems for OOV tokens, leading to inconsistent and 

incorrect representations. 

• Lack of contextualization, which holds same for stemming as for lemmati-

zation. 

• Could lead to problem of over-stemming, which can result in words that 

have different meaning having the same stem token. 

 

2.2.3 BPE 

 

BPE (Byte-Pair-Encoding) is a compression technique that found a big popu-

larity in application to NLP sphere. BPE allows to tokenize text into subwords, 

which is a solution between word and character-based tokenization. BPE operates at 

the subword level, breaking down words into smaller units or subword tokens. The 

central idea behind BPE is a compression principle where frequent sequences of 

characters are progressively replaced with a single, unused token. This process is 

iteratively applied until a specified vocabulary size is reached. BPE ensures that the 

most common words are represented in the vocabulary as a single token while the 

rare words are broken down into two or more subword tokens. BPE tokenization 

process can be simply described by the following stages: 

1. Start with a vocabulary containing individual characters and their frequen-

cies. 

2. Identify the most frequent pair of adjacent characters in the current vocab-

ulary. Merge this pair into a new token. 
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3. Update the vocabulary with the newly created token. Repeat this process 

iteratively until the desired vocabulary size is achieved. 

As it was mentioned during the description of BPE tokenization process, BPE 

provides a possibility to preselect number of tokens, thus controlling the complexity 

and dimensionality of data. By working on a subword level, BPE is effective when 

working with noisy data that includes word with typos and errors. After tokenization 

using BPE, word can be presented as representations of their subwords, giving an 

opportunity to have similar vector representation for same word with typos.  

Advantages: 

• Incorporated functionality for choosing number of unique tokens, allowing 

for flexibility and effective dimensionality reduction. 

• Handling OOV tokens and unseen data. 

• Possibility of handling noisy data. 

• Language independent. 

Disadvantages: 

• A need to train an algorithm in order to learn subwords, which makes BPE 

sensitive to training data. 

• Increased sequence length because of subword tokens. 

 

2.3 Analysis of programming languages  

 

2.3.1 Java 

 

Java is a multi-platform, object-oriented, and network-centric language that 

can be used as a platform in itself. It is a fast, secure, reliable programming language 

for coding everything from mobile apps and enterprise software to big data applica-

tions and server-side technologies. Java's performance is significantly enhanced by 

its use of Just-In-Time (JIT) compilation. This means that Java code is compiled into 

machine code at runtime, allowing for optimizations that can boost execution speed. 



36 

Java's memory management through garbage collection contributes to stable and ef-

ficient memory handling. While it introduces some overhead, modern Java Virtual 

Machines (JVMs) are optimized to minimize the impact on performance. Java ben-

efits from a mature and extensive ecosystem. This ecosystem includes tools, librar-

ies, and frameworks that can aid in optimizing and accelerating deep learning appli-

cations.  Even though Java may not be as commonly associated with deep learning 

frameworks as languages like Python, its performance characteristics make it a via-

ble choice in certain scenarios. Java can seamlessly integrate with optimized native 

libraries, enhancing its numerical computation capabilities. Leveraging libraries like 

MKL or OpenBLAS can significantly boost the speed of mathematical operations 

crucial in deep learning. Java provides many libraries that can be used to accomplish 

tasks relevant to machine learning, data analysis and deep learning including famous 

Tensorflow, Weka and Deeplearning4j.  

Advantages: 

• Platform independence assures that applications written in Java can be de-

ployed on various platforms with no modification. 

• Java is known for its scalability, which is essential for distributed compu-

ting. 

• Java's native support for multithreading is beneficial for concurrent execu-

tion, making it suitable for tasks like parallelizing deep learning model training. 

• Java has many libraries for accomplishing machine learning and data anal-

ysis tasks. 

Disadvantages: 

• Java is not as prevalent as Python in the deep learning community. Many 

deep learning frameworks and tools are primarily developed and optimized for Py-

thon, potentially limiting the available resources and community support for Java. 

• Java may be perceived as slower for prototyping compared to dynamically 

typed languages. 

• Complexity in doing dynamic data analysis.  
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2.3.2 Julia 

 

Julia is a dynamic, high-level, and high-performance programming language 

designed for technical computing. It was created to address the need for a language 

that combines the ease of use of scripting languages with the performance of lower-

level languages, making it well-suited for numerical and scientific computing tasks. 

Julia is renowned for its performance, often reaching levels comparable to languages 

like C and Fortran. This is achieved through just-in-time (JIT) compilation, allowing 

Julia code to be dynamically compiled to machine code for efficient execution. Julia 

features multiple dispatch, a programming paradigm that enables highly expressive 

and generic code. Functions can be specialized for different types and combinations 

of types, promoting flexible and extensible designs. Julia's syntax is designed to be 

readable and resembles mathematical notation, making it accessible to users from 

diverse backgrounds. Its user-friendly syntax contributes to fast development and 

prototyping. Julia has built-in support for distributed and parallel computing. This 

enables users to scale their computations across multiple processors or nodes, mak-

ing Julia suitable for handling large-scale and computationally intensive tasks. Julia 

is built with interoperability in mind. It can easily interface with other languages like 

C, Fortran, and Python, facilitating integration with existing libraries and tools. All 

the aforementioned features of Julia make it a candidate for accomplishing the tasks 

which were already highlighted in the work. 

Advantages: 

• Julia is designed with a focus on performance, often comparable to low-

level languages like C or Fortran. This makes Julia well-suited for high-performance 

computing tasks, including deep learning. 

• Julia provides a syntax that is easy to read and write, resembling 

mathematical notation. This can contribute to faster development and prototyping, 

crucial aspects in the iterative process of deep learning model creation. 
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• Similar to Java, Julia uses JIT compilation. This allows for efficient 

compilation of code, making it performant and adaptable to different hardware 

architectures. 

• Julia has libraries designed specifically for deep learning, whereas its 

interoperability with other languages provides even more tools. 

Disadvantages: 

• While Julia's community is growing, it is not as extensive as communities 

for languages like Python. This can result in fewer resources, tutorials, and 

community-contributed models compared to more established languages. 

• Julia's deep learning ecosystem, while promising, might not be as mature 

as those in languages like Python. Well-established frameworks like TensorFlow 

and PyTorch have larger user bases and extensive documentation. 

• Julia is still gaining traction in industry applications compared to more 

established languages like Python. This could influence the choice of Julia for deep 

learning in certain enterprise settings. 

 

2.3.3 C++ 

 

C++ is a general-purpose programming language that extends the capabilities 

of the C programming language. Developed by Bjarne Stroustrup, C++ combines 

procedural, object-oriented, and generic programming features, making it a versatile 

and powerful language. C++ is widely used in various domains, including system 

programming, game development, embedded systems, and high-performance com-

puting. C++ is known for its high-performance capabilities. It allows low-level 

memory manipulation and provides features like pointers, making it suitable for ap-

plications that demand efficient resource utilization. C++ supports object-oriented 

programming, enabling developers to organize code into classes and objects. This 

paradigm promotes code reuse, modularity, and a clearer organization of software 

components. C++ code can be highly portable across different platforms and oper-

ating systems. This makes it a preferred choice for applications that need to run on 
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diverse environments. Speaking of its usage for deep learning purposes, C++ can be 

used to implement performance-critical components, taking advantage of its effi-

cient memory management and low-level capabilities which is essential for deep 

learning. 

Advantages: 

• C++ is very performance efficient and is suitable for implementing 

performance-critical components for deep learning models. 

• C++ provides manual memory management, allowing developers fine-

grained control over memory. This is beneficial for optimizing memory usage in 

deep learning applications. 

• C++ provides libraries relevant to deep learning, which are specifically 

optimized for the language. 

Disadvantages: 

• Usage of C++ may result slower and more complex prototyping because of 

lack of dynamic features. 

• It’s not very convenient to apply data processing and analysis using C++. 

 

2.3.4 Python 

 

Python, created by Guido van Rossum and first released in 1991, is a high-

level, general-purpose programming language known for its readability, versatility, 

and extensive community support. Its design philosophy prioritizes code readability 

and ease of use, making it an excellent choice for beginners and a powerful tool for 

professionals across various domains. ython's syntax is designed to be clear and 

readable, emphasizing code readability and reducing the cost of program mainte-

nance. This feature contributes to Python's popularity among developers. Python is 

an interpreted language, allowing for rapid development and testing. Its dynamic 

typing provides flexibility but also necessitates careful consideration of variable 

types during execution. Python abstracts many complex operations, allowing devel-

opers to focus on solving problems rather than managing low-level details. This 
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high-level approach accelerates development and promotes code simplicity. Python 

is inherently cross-platform, enabling code written on one operating system to run 

on others with minimal modifications. This portability enhances the versatility of 

Python applications. Python has huge community and lots of use cases, including: 

web-development, data science and analysis, scientific computing, automation and 

machine learning along with deep learning. Python has huge number of libraries that 

extend its capabilities, including deep-learning specific libraries like Tensorflow, 

Pytorch, Caffe and others. Despite Python seems as the best candidate because of 

convenience of code prototyping and its dynamic nature, it all goes with the cost of 

reduced performance and higher memory consumption. 

Advantages: 

• Python is a dynamic language, which provides more convenience in terms 

of dynamic data analysis, data preprocessing and algorithms prototyping. 

• Python has a large and active community in the deep learning space. This 

vibrant community contributes to a wealth of tutorials, documentation, and shared 

knowledge, fostering collaborative development and problem-solving. 

• Python, similarly to Julia provides syntaxis which easy to write and read, 

enhancing its prototyping abilities even more. 

• Python has many libraries to speed up and vectorize computations, perform 

complex data analysis tasks and do modeling. 

Disadvantages: 

• Python's Global Interpreter Lock (GIL) can limit the concurrency of multi-

threaded programs. 

• Python's resource consumption may be higher compared to languages like 

C++ in certain scenarios. 

• Python's interpreted nature can lead to slower execution speeds compared 

to compiled languages like C++. 

Based on analysis of programming languages, Python was chosen due to pre-

vious familiarity with it, huge number of libraries and its dynamic nature.  
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2.4 Analysis of modelling frameworks 

 

Speaking about the process of modelling, in particular constructing the archi-

tecture of algorithm, its training and evaluation, the choice of framework is crucial. 

Nowadays, most popular frameworks for modeling and working with deep-learning 

are TensorFlow[35] and PyTorch[36]. While TensorFlow and PyTorch are general 

purpose deep-learning frameworks, there are specialized frameworks for addressing 

tasks in NLP sphere, such as Gensim[37], HuggingFace[38] and others. Speaking of 

classical machine learning, a very common library is scikit-learn. While scikit-learn 

has decent implementations of classical machine learning algorithms, there special-

ized libraries that contain advanced implementations of specific algorithms, like 

XGBoost[39] and LightGBM[40].  

 

2.4.1 TensorFlow 

 

TensorFlow views models as DAGs (directed acyclic graphs) and follows the 

idiom of “data as code and code as data”. TensorFlow is designed for scalability, 

enabling the development of models that can seamlessly transition from local envi-

ronments to distributed systems. This scalability is crucial for handling large datasets 

and training complex models. TensorFlow includes TensorBoard, a powerful visu-

alization tool. It allows users to visually inspect and analyze various aspects of their 

models, such as training curves, computational graph structures, and embeddings. 

TensorFlow supports deployment across various platforms, including mobile de-

vices and embedded systems. This makes it suitable for developing applications in 

diverse environments.  TensorFlow uses symbolic computations, thus before making 

any, the overall graph of mathematical operations is constructed. This specific fea-

ture is the one that makes the framework faster, as at the runtime the defined graph 

computations are run using optimized C++ code. However, such feature comes with 

a cost. It’s pretty hard to debug TensorFlow computations, graph construction, and 
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operations flow. Luckily, a Keras [41] framework exists, which is an abstraction on 

top of TensorFlow, that makes modelling much easier and faster.  

Advantages: 

• TensorFlow has a wide community that supports it. Its community-driven 

development and continuous updates contribute to its status as a leading deep learn-

ing library. 

• TensorFlow seamlessly integrates with Keras, a high-level neural networks 

API. This integration combines TensorFlow's power with Keras's simplicity, provid-

ing an accessible interface for rapid model prototyping. 

• TensorFlow is a computation-efficient framework, which is essential for 

deep learning application. 

• TensorFlow has specific functionality for optimizing models during and af-

ter training in terms of their size and latency. 

Disadvantages:  

• TensorFlow can be resource-intensive, demanding substantial computa-

tional power and memory. This might be a consideration in scenarios with limited 

resources or for edge device deployments. 

• While TensorFlow supports dynamic computation graphs, the dynamic 

graph mode may have some limitations compared to libraries that inherently operate 

with dynamic graphs. 

 

2.4.2 PyTorch 

 

PyTorch is a framework introduced by Facebook, which is and extension of 

lua-based framework Torch. It can be thought of as the main competitor of Tensor-

Flow. It presents models in the same manner as TensorFlow, but instead of symbolic 

definitions, PyTorch works dynamically, giving a possibility to change the architec-

ture and execute different mathematical operations on the fly. This feature allows to 

debug architectures and code more easily than with TensorFlow, which makes 

PyTorch better for research comparing with pure TensorFlow framework. Recent 
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versions of PyTorch come with a bult-in frameworks for model optimization for 

low-resource machines and a possibility of using pre-trained models. PyTorch inte-

grates seamlessly with NumPy, a widely used numerical computing library in Py-

thon. This interoperability simplifies data manipulation and encourages a smooth 

transition for users familiar with NumPy. PyTorch includes torchvision and torch-

text, specialized libraries for computer vision and natural language processing 

(NLP), respectively. These libraries offer pre-built components and datasets for 

common tasks. The overall trend of using PyTorch is for the sake of research mod-

elling and production where non-functional requirements are not very demanding.  

Advantages: 

• The dynamic computational graph in PyTorch is well-suited for tasks where 

the model architecture changes dynamically, offering more flexibility for 

researchers and developers. 

• PyTorch has a strong and active community. The community-driven 

development model contributes to regular updates, extensive documentation, and a 

wealth of tutorials. 

• As in case of TensorFlow, PyTorch has functionality for model 

optimization. 

• PyTorch has many libraries built on top which make it easier to prototype 

models and train them. 

Disadvantages: 

• For certain production scenarios, the static computational graph used by 

TensorFlow and other frameworks may offer advantages in terms of optimization 

and deployment. 

• Similar to TensorFlow, PyTorch can be resource-intensive, demanding 

substantial computational power and memory. 
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2.4.3 HuggingFace 

 

Both TensorFlow and PyTorch are often considered as core frameworks, on 

top which the other are built. For example, a popular library for pretraining Trans-

formers architectures, named HuggingFace is built on top of both PyTorch and Ten-

sorFlow, giving a possibility of using features of core libraries along with function-

ality of HuggingFace.  HuggingFace provides a wide range of pre-trained models 

for tasks such as text classification, language translation, summarization, and more. 

These models are based on transformer architectures and achieve state-of-the-art 

performance on various benchmarks. Hugging Face operates a Model Hub, a plat-

form for sharing and discovering models. Users can easily access and download pre-

trained models for their specific NLP tasks, fostering collaboration and knowledge 

sharing. Hugging Face offers tokenization tools that efficiently handle the pro-

cessing of text into tokens for input to machine learning models. The tokenizers sup-

port a variety of languages and tokenization strategies. 

Advantages: 

• HuggingFace provides access to state-of-the-art pre-trained models, includ-

ing BERT, GPT, and others. These models have achieved top performance on vari-

ous NLP benchmarks and tasks. 

• The strong community around Hugging Face contributes to a collaborative 

and dynamic development environment. 

• The Model Hub serves as a central repository for pre-trained models, mak-

ing it convenient for users to discover, share, and access models for various NLP 

tasks. This centralization enhances collaboration and model reuse. 

• Hugging Face's tokenization tools are efficient and versatile, supporting a 

wide range of languages and tokenization strategies. This aids in preprocessing text 

data for input into machine learning models. 

Disadvantages: 

• Keeping track of model versions and updates may pose a challenge, espe-

cially as the library evolves. 
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2.4.4 Scikit-learn 

 

Scikit-learn is an open-source machine learning library for Python that pro-

vides simple and efficient tools for data analysis and modeling. It is built on NumPy, 

SciPy, and Matplotlib and offers a wide range of machine learning algorithms for 

classification, regression, clustering, dimensionality reduction, and more. Scikit-

learn includes a broad selection of machine learning algorithms, ranging from simple 

and interpretable models like linear regression to more complex methods such as 

support vector machines and ensemble methods. It also provides tools for data pre-

processing, including methods for handling missing values, scaling features, encod-

ing categorical variables, and splitting datasets into training and testing sets.  

Advantages: 

• Scikit-learn is designed with simplicity and ease of use in mind. Its 

consistent API and clear documentation make it accessible for users at different skill 

levels, from beginners to experienced practitioners. 

• The library is versatile and applicable to a wide range of machine learning 

tasks, including classification, regression, clustering, and dimensionality reduction. 

It is suitable for both small-scale projects and larger, more complex applications. 

• Scikit-learn has a large and active community. 

Disadvantages: 

• Scikit-learn is primarily focused on traditional machine learning algorithms 

and may not provide the same level of support for deep learning methods. 

• While suitable for many tasks, scikit-learn may face limitations in terms of 

scalability for extremely large datasets. 

 

2.4.5 Xgboost 

 

XGBoost (Extreme Gradient Boosting) is an open-source machine learning 

library designed for gradient boosting frameworks. Developed to optimize speed and 

performance, XGBoost is widely used for supervised learning tasks, particularly in 
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structured/tabular data settings, and has gained popularity for its efficiency and ef-

fectiveness in predictive modeling.  XGBoost employs a gradient boosting frame-

work, which builds a strong predictive model by combining the outputs of multiple 

weak models, typically decision trees. This ensemble approach enhances predictive 

accuracy and generalization. XGBoost is designed for efficient parallel and distrib-

uted computing. It leverages features such as column block-ing for parallelization, 

making it suitable for large datasets and speeding up training times. XGBoost in-

cludes tree pruning methods that control the depth of individual decision trees. Prun-

ing mitigates the risk of overfitting and contributes to the overall efficiency of the 

algorithm. One particular difference between XGBoost and other implementations 

of gradient boosted trees lies in the way XGBoost construts trees. XGBoost follows 

a leaf-wise growth strategy. In each iteration, it selects the split that offers the max-

imum reduction in loss, leading to imbalanced trees where certain branches can be 

deeper than others. This strategy is more aggressive in finding the optimal splits but 

can be computationally expensive.  

Advantages:  

• XGBoost is known for its high performance and efficiency. It often outper-

forms other machine learning algorithms and is particularly well-suited for struc-

tured/tabular data. 

• XGBoost provides insights into feature importance, helping users under-

stand which features contribute the most to model predictions. 

• The efficient parallel and distributed computing capabilities of XGBoost 

make it scalable and well-suited for large datasets. 

Disadvantages: 

• XGBoost can be resource-intensive, especially in terms of memory usage. 

• While XGBoost is powerful, tuning its hyperparameters can be complex. 
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2.4.6 Gensim  

 

Gensim is an open-source library for unsupervised topic modeling, document 

similarity analysis, and other natural language processing (NLP) tasks. It is designed 

to efficiently process large corpora and build scalable models for semantic analysis, 

particularly in the context of vector space modeling. Gensim supports the training 

of word embeddings using techniques like Word2Vec. It's designed for scalability 

and can efficiently process large corpora. It implements streaming algorithms, ena-

bling users to process and analyze documents in a memory-efficient manner. More-

over, Gensim can be easily integrated into NLP pipelines and workflows. It provides 

a user-friendly interface for training models, transforming text data, and extracting 

semantic information. Gensim can be easily integrated into NLP pipelines and work-

flows. It provides a user-friendly interface for training models, transforming text 

data, and extracting semantic information. The core algorithms in Gensim use battle-

hardened, highly optimized & parallelized C language routines. 

Advantages: 

• Support for Word2Vec that allows users to train word embeddings, 

capturing semantic relationships between words. 

• Gensim is designed to handle large datasets efficiently. Its streaming 

algorithms enable users to process extensive corpora without requiring the entire 

dataset to be loaded into memory. 

• Gensim benefits from an active community of researchers and developers. 

Disadvantages: 

• Lacks implementations of more sophisticated embedding models based on 

Transformers architectures. 

• Gensim is limited to topic modeling and word embeddings and doesn’t 

provide as extensive a set of components for comprehensive NLP tasks as some 

other libraries. 

Tensorflow was picked as the main framework for modelling of deep learning 

architectures; Gensim was used for pretraining of Word2Vec embeddings; Scikit-
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learn for training of logistic regression and XGBoost for utilization of Gradient-

boosted trees. Finally, HuggingFace was picked for storing data and models along 

with performing text tokenization. 

 

2.5 Conclusions  

 

The comprehensive analysis of tools for accomplishing the aforementioned 

tasks was conducted in this chapter. As the result of embeddings analysis, it was 

decided to stick to Word2Vec approach because of its simplicity and effectivity in 

training and adaptation to more complex models. The discussion touched on com-

parative analysis of tokenization techniques, showing that BPE suppresses lemma-

tization and stemming in terms of OOV tokens handling and provides a possibility 

to tremendously reduce number of the unique tokens. The analysis of programming 

languages showed that Python is the best choice for solving the task at hand. Finally, 

the analysis of libraries for modeling was performed.  
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3 DATA COLLECTION, ANALYSIS, PROCESSING AND FILTRATION 

 

As it was already mentioned, in comparison with Bobenko’s work, it was de-

cided to gather bigger dataset that include more domains of reviews. In particular, 

the decision was to acquire reviews relevant to three domains: hotels, restaurants 

and products. When working with real-world textual data, it’s mandatory to pay at-

tention to mistakes in words, specific characters and symbols, text which is not re-

view but rather a question, etc. In this chapter, the data collection, analysis, filtering 

and processing is discussed. 

 

3.1 Data collection 

 

The data was parsed from two websites TripAdvisor and Rozetka. Parsing 

which is often referred to as web scrapping is the process of data extraction from 

websites and its transformation into structured data. In order to parse big amounts of 

data without being banned, a number of techniques were used, including: user-agent 

rotation, proxy server and different time intervals between scrapping.  

User-agent header is just one of many request headers, main goal of which is 

to provide information about request sender’s device, including information of de-

vice type, operating system and browser name and version. Nevertheless, histori-

cally main purpose of user-agent is to optimize served content for different devices, 

nowadays websites mostly use this datapoint for tracking. Websites often analyze 

user-agent headers to determine whether the request sender is a real user or a bot. 

Mostly websites ban those requests which lack user-agent information. There also 

situations when sender is banned because of too much requests with same user-agent 

information. Either way, the best approach is to use user-agent rotation, the proce-

dure when user-agent information is changed every request. While scrapping data 

from TripAdvisor, for each page of hotel/restaurant a different user-agent was used.  

Also, each time “Access Denied” message was received, user-agent was substituted 

with a new one. 
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Generally, every website has a specific limit of requests per amount of time. 

When limit of requests is exceeded, the sender IP-address is added to blacklist, 

which makes it impossible to work with website using same IP again. There is also 

a possibility of captcha appearance, when too much requests are sent from same IP, 

which is pretty difficult to solve. In order to by-pass permanent ban by IP, proxy is 

used. The main goal of proxy is to hide device’s real IP-address. While visiting the 

website with proxy, only IP-address of proxy is exposed. For proxy and IP rotation, 

the stem library was used. Stem is a controller on top of Tor browser (which is also 

utilized as a proxy server), which gives a possibility to execute commands from Py-

thon. Each time “Access Denied” message was received, IP address was changed 

using Tor. 

To speed up data collection, multiprocessing w.r.t each entities page was ap-

plied. As both Rozetka and TripAdvisor required few manual interactions, including 

button clicks to go to the next page and to show full review text, the automation was 

required. To automate manual work while scrapping websites, Selenium was used. 

Selenium an open-source automated testing framework, used to validate web appli-

cations across different browsers and platforms. The main advantage of Selenium is 

that it’s a cross-platform framework, that can control browser from OS level using 

WebDriver. The point of WebDriver is to control browser directly by communi-

cating with it. Nevertheless, the Selenium is mostly used for automation of testing 

routines, its functionality allows to automate manual interactions which are manda-

tory for advanced parsing. Before clicking on the button, Selenium should be given 

the information regarding button’s location on the page. The search for buttons was 

made through class names and XPATH. 

 For TripAdvisor the information of only Ukrainian hotels and restaurants was 

parsed. Data scrapping process for both sites was split into two different steps: 

1. Acquiring general information about each entity, including its name, overall 

rating and link to its page. 

2. Acquiring deeper information relevant to reviews based on already parsed 

links. 
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During second step of web scrapping, the whole html pages were saved and 

then parsed using bs4 (BeautifulSoup) library. BeautifulSoup is a Python framework 

used for parsing HTML and XML documents using parse tree. Each time a new page 

was opened, or a specific action was performed, the sleep function was used in order 

to give browser time to load all the resources.  The algorithm for scrapping included 

specific rule-based logic, used for navigation over website and receiving of full in-

formation about each review. The algorithm included the following steps: 

1. The first page is opened. If information for some pages is already parsed, 

scrapping continues from where it was left off. 

2. Check whether access to page is denied. If so, IP address along with user-

agent is changed and the check for access denied is retried. In case when “Access 

denied” is encountered for more than N times, the algorithm stops. In other cases, 

algorithm continues. 

3. Checkmark to show all languages is clicked.  

4. Checkmark to show full reviews is clicked. 

5. Check for pop-up window. If pop-up window is detected it’s closed by 

clicking on specific button. 

6. Page’s html is saved to disk. 

7. Check for “Next page” button availability. If button is available, it’s clicked 

and process from 4-7 is repeated. In the other case, the algorithms stops. 

In result, the dataset containing 671k reviews was collected. Nevertheless, 

many complementary information was parsed, the primer focus was set on the fol-

lowing columns:  

• reviews_text – parsed text of original reviews.  

• dataset_name – name of domain dataset.  

• entity_name – name of unique hotel, restaurant or product for which review 

was written.  

• rating – rating of review. 

A few records from resulting dataset are shown (figure 3.1).  
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Figure 3.1 - 20 random samples drawing from originally collected data 

 

3.2 Data preprocessing and analysis 

 

Analyzing the collected dataset, it was found that similarly to the work of 

Bobenko, parsed textual data was multi-lingual, including, Russian, Ukrainian and 

other languages (19% to Ukrainian and 81% of reviews relevant to other languages). 

What is more, TripAdvisor don’t support Ukrainian language at all, thus all the re-

views relevant to hotels and restaurants domains were in other languages. To tackle 

this problem, the translation process was automated by utilizing Microsoft transla-

tion in Word application. Each text of review was copy-pasted to Microsoft Word 

document and separated by newline character, after which the process of translation 

into Ukrainian was executed.  As full automation could still result in errors and in-

correct translation, reviews were automatically filtered. Analyzing the distribution 

of characters number in the translated reviews, it was found that some of them had 

only 1 character and thus were filtered out (appendix B.2).  
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Logically if the difference between number of characters in original review 

and its translation is too big, translated review could be incorrect or incomplete. 

Those reviews for which the difference was bigger than 200 characters were filtered 

out.  

As the possibility of partial translation on the level of sentences existed, it was 

decided to detect and filter out such cases. To achieve this, a fasttext model for lan-

guage detection was utilized. The model was trained in a CBOW (continuous bag of 

words) fashion and utilized hierarchical softmax to speed up computations. The in-

put to the model was n-gram text, representation of which was averaged before the 

classification layer. Fasttext model is capable to detect text in 176 languages and 

was trained on corpora from Wikipedia, Tatoeba and SETimes. What is more, the 

trained model is compressed by applying product quantization, which approximates 

a real-valued vector by finding the closest vector in a pre-defined structured set of 

centroids, making it light-weight and rapid in terms of inference.  Translated reviews 

were tokenized into sentences and for each sentence the language was detected using 

aforementioned fasttext model. Based on this information, partially translated re-

views were filtered out.  

Each sentence was tokenized into words using special tokenizer for Ukrainian 

language that tolerated both apostrophe and hyphen characters. In order to reduce 

vocabulary and normalize tokens, a specific preprocessing that separated letters from 

symbols was used. In particular, the space was added between each combination of 

letters, symbols and numbers (figure 3.2). 

 

 

Figure 3.2 – Example of tokens before and after addition of spaces. New tokens are 

shown in red. 

 

It’s worth mentioning that after words-based processing, tokens were con-

verted back to sentences in order to allow for other types of tokenization. 
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As some of the reviews could be questions about hotels, restaurants or prod-

ucts, specific heuristic to determine questions based on POS (part of speech) tags 

was applied. POS tags were detected using pymorphy2[42] library (appendix B). 

Found questions were filtered out from the dataset.  

Other preprocessing included deletion of multi-spaces, removal of a newline 

character, lowercasing and lemmatization that was only used for classical machine 

learning methods. Applied preprocessing resulted in a reduced dataset consisting of 

662907 reviews. Dataset included 364935 unique words and 205161 unique lemmas. 

Entity name is an essential categorical feature which is used further for final algo-

rithm of key phrases retrieval. There are more than 28k of unique entities with the 

median number of reviews equal to 7. The data can be logically split into subsets 

w.r.t domains (dataset_name column) and whether the text was translated or not 

(translated column). In terms of distribution w.r.t domains, 60% of data is relevant 

to products, 28% to restaurants and 12% to hotels reviews. Analyzing the distribu-

tion of ratings, it’s clear that it’s far from even (figure 3.3).  

 

 

Figure 3.3 - Distribution of ratings across all domains 

 

As the result of analysis, the following conclusions were made:  
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1. The fact that number of unique words is pretty huge implies filtering of 

stop-words for classical machine learning algorithms and usage of specific tokeniz-

ers for deep- learning based methods to reduce number of tokens.  

2. The fact that distribution of ratings is imbalanced, implies usage of specific 

techniques to stabilize training procedure and correctly evaluate model performance.  

3. The fact that distribution of domains across the dataset is not even and ma-

jor part of reviews are translated can cause model to overfit to one domain. Thus, it 

was decided to conduct evaluation of algorithms w.r.t each domain and translated 

identifier category.  

 

3.3 Data filtering 

 

The experiments were conducted w.r.t both classical machine learning mod-

els, in particular logistic regression and gradient-boosted trees and deep-learning 

based ones, which utilized convolution, recurrent and attention layers. While train-

ing the models, the issue of noisy data was faced, which was caused by the subjec-

tivity of user’s ratings and discrepancy between the actual text of review and its 

rating. Such a problem typically arises while working with human generated data. 

Thus, in order to filter out misleading data samples, an automotive approach was 

used.  

Models with different architectures were picked and trained on dataset in a 

cross-validation manner, so that each model could generate predictions for each K 

fold, while being trained on K-1 folds. Cross validation is a statistical method that is 

often used for model selection, as it gives an opportunity to estimate model’s skill 

to generalize to the data given different partitions of it as a training one. In K-fold 

cross validation, the data is partitioned into K equally sized segments or folds. The 

validation is then executed by repeatedly training model on K-1 folds and validating 

on K fold. During such a procedure, the metric picked for evaluation is computed 

for K fold and preserved for aggregation. Typically, mean or median aggregation is 

used to get information of general performance of model towards K different folds. 
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In the setting of imbalance classes, it’s important to use stratified cross validation, 

that ensures equal distribution of classes across folds. 

For filtration, a stratified K-fold strategy was used with K equal to 5, meaning 

that each time model was trained on 80% of data, while being validated on the rest 

20%.  After generating predictions for each sample using N different models, those 

samples for which all the models made incorrect prediction were analyzed and fil-

tered out.  

The logic behind the filtering was in the fact that different models would learn 

distribution of data w.r.t target differently, but would make same mistakes for outli-

ers. It’s worth mentioning that a probabilistic variation of an algorithm for filtration 

exists. In probabilistic setting, those samples for which predicted probability distri-

bution of classes across all the models is not picked, but is whether close to uniform 

are deleted, as such probability distribution implies that model is unconfident in its 

predictions. It was empirically discovered that majority of analyzed samples were 

mislabeled and had discrepancy between review text and rating (figure 3.4). 

 

 

Figure 3.4 – Example of confusing samples with discrepancy between  

reviews and rating 
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It’s important to note that subjectivity of ratings naturally exists in terms of 

ratings that are close to each other (1 star is pretty similar to 2 stars, whereas same 

is true for 5 and 4 ones). Thus, only those samples for which the difference between 

actual rating and predicted was bigger than two were filtered. As the result of filter-

ing, 7437 samples were removed from dataset.  

 

3.4 Conclusion  

 

To tackle the task described in the work, it was decided to gather a cross-

domain dataset of reviews from TripAdvisor and Rozetka websites. To accomplish 

the task, data scrapping with advanced techniques, including user-argent rotation, 

proxy servers and different time intervals was used. In result, the dataset including 

671k reviews was collected. The analysis of data, revealed that bigger part of it con-

sisted of Russian reviews, which were then translated into Ukrainian. Due to errors 

during translation including partial translations, missing spaces between words, and 

questions in reviews section, specific processing of data was used, that resulted into 

shrunk dataset of 662907 reviews. The rest of analysis influenced further decisions 

made in the work. In order to filter out discrepant reviews, a machine-learning based 

approach was applied. 
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4 MODELING AND DEVELOPMENT OF KEY-PHRASES RETRIEVAL 

ALGORITHM 

 

As it was already mentioned, the proposed approach can be split into two dif-

ferent steps: modeling of ratings based on reviews textual information and applica-

tion of explainable artificial intelligence techniques for extraction of most influential 

phrases w.r.t explicit ratings. 

The logic behind the presented approach is the following: by learning to model 

ratings based on reviews textual information, the model will also learn that some 

words and phrases have strong influence towards specific rating score. Having a 

model trained in aforementioned way, the one can perform reverse engineering in 

order to get an importance weighting of words and phrases towards predicted rating 

score or range of all possible scores. Such approach requires to store only trained 

model and its tokenizer, as opposed to Bobenko’s approach, that needs to store 

model and tables of positive and negative n-grams. It’s worth mentioning, that de-

veloped technology can be easily integrated into microservice architecture and be 

used as an API.  In this chapter, the process of reviews ratings modelling and key-

phrases retrieval is described, the analysis of quantitative results of both steps w.r.t 

predefined metrics is conducted. 

 

4.1 Modeling  

 

The training procedure can be divided into two categories: classical machine 

learning algorithms and deep-learning ones. As it was already mentioned, ratings are 

pretty subjective, thus it was decided to conduct experiments both on the problem of 

rating estimation and on sentiment prediction one. To convert task from rating esti-

mation to sentiment prediction, rating labels were mapped to sentiment ones using 

the following rule: ratings equal to 2 and lower mapped to negative, rating of 3 to 

neutral, and ratings higher than 3 to positive. For sentiment prediction, the experi-
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ments were conducted towards 5 deep-learning architectures that achieved best re-

sults on ratings estimation and two classical machine learning algorithms. The data 

was split in a stratified manner w.r.t each domain dataset and ratings.  

F1-score is a harmonic mean of precision and recall metrics, which gives a 

possibility to get a class-wise performance rather than overall performance as done 

by accuracy. Speaking of utilization of f1-score for multiclass setting, there are dif-

ferent ways to aggregate results. During micro averaging, true positives, false posi-

tives and false negatives are calculated for each class in order to calculate global f1-

score. Micro averaging doesn’t take information of imbalance into account. Other 

method of averaging is weighted average. During weighted average, the f1-score is 

calculated for each class and is weighted by support of corresponding class. Given 

bigger weight to classes with bigger support, is preferable when classes with more 

support are of bigger importance to us. However due to the fact that data used during 

inference could have other distribution than training one and assuming that perfor-

mance of model w.r.t each class is equally important the other metric should be used. 

During macro averaging, the average of f1-scores for each class is calculated, there-

fore providing information about model’s performance considering equal contribu-

tion of each class. Throughout experiments, f1-score with macro averaging was used 

as the main metric.  To choose between algorithms, averaged f1 macro w.r.t three 

domains was used, as the main goal for modeling was to generalize to all domains.  

The dataset was split into train, validation (10%) and test (10%) in a stratified man-

ner w.r.t rating scores and data domains. 

Firstly, classical machine learning algorithms were trained. Experiments were 

conducted towards logistic regression and gradient-boosted trees implementation of 

xgboost library. Such algorithms were picked, as they can be directly utilized for 

explainable AI. For instance, weight coefficients of logistic regression w.r.t each 

input feature can be analyzed to gain sense of what feature is most influential w.r.t 

specific class (bigger weight means bigger influence). Stop words were removed 

from lemmatized tokens, which were then transformed into vectors using tf-idf (term 

frequency – inverse document frequency) and used as input to models. To tackle the 
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problem of imbalance classes, class weights were used. TF-IDF was applied along 

with algorithm training by utilizing a scikit-learn pipeline. 

As the runtime of classical machine learning algorithms is often lower than of 

deep-learning ones due to fewer number of parameters, a Bayesian search over the 

hyper-parameters was performed. Basically, hyper-parameters tuning is a process of 

determining best hyper-parameters of the algorithm w.r.t specific metric. It’s also 

called second level or black box optimization and assumes optimization of model’s 

hyper-parameters prior to black box model performance. As some algorithms have 

huge number of hyper-parameters, it’s favorable to do hyper-parameters search ef-

fectively. In comparison to grid search, which tries out all the possible combinations 

of parameters, Bayesian search optimizes parameter selection in an iterative way. 

There are five aspects of model based hyper-parameter optimization: 

1. A domain of hyper-parameters over which the search will be done. 

2. An objective function which takes hyper-parameters and returns a score, 

that we want to optimize. 

3. The surrogate model of the objective function. 

4. A selection function that evaluates which hyper-parameters to choose next 

from the surrogate model. 

5. A history that includes mapping of hyper-parameters and corresponding 

score, that are used by the algorithm to update the surrogate model. 

During Bayesian search, the optimization was made w.r.t f1-macro on valida-

tion subset of data for both rating score estimation and sentiment analysis. As the 

surrogate model, random forest regressor was used, with selection function equal to 

expected improvement. While searching for hyper-parameters the one needs to set 

range of values for domain over which the search will be done. For gradient boosted 

trees the following hyper-parameters were tuned: 

1. max_df parameter relevant to maximal frequency of tokens for TF-ID: (0.7, 

0.95). 

2. min_df parameter relevant to minimum frequency of tokens for TF-ID: (5, 

50). 
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3. ngrams on which TF-IDF operated: (1,2). 

4. max_depth relevant to maximal depth of each tree: (3, 25). 

5. gamma parameter controlling minimal loss reduction required to make fur-

ther partition on a leaf node of the tree: (1, 9). 

6. alpha parameter relevant to L1 regularization term on weights: (40, 180). 

7. lambda parameter relevant to L2 regularization term on weight: (0, 1). 

8. colsample_by_tree is the subsample ratio of columns when constructing 

each tree: (0.5, 1). 

9. min_child_weight parameter relevant to minimum sum of instance weight: 

(0,10). 

10. n_estimators parameter relevant to maximal number of trees learned: (30, 

300). 

For logistic regression the following hyper-parameter were tuned:  

1. max_df parameter relevant to maximal frequency of tokens for TF-ID: (0.7, 

0.95). 

2. min_df parameter relevant to minimum frequency of tokens for TF-ID: (5, 

50). 

3. ngrams on which TF-IDF operated: (1,2). 

What is more, it’s worth mentioning that logistic regression was trained in 

one-versus-all setting for multiclass classification and with number of maximal iter-

ations equal to 4000. 

As of deep-learning algorithms, the experiments were conducted w.r.t combi-

nation of different layers and mechanisms including attention, convolution and re-

currency. Considering the fact that real-world text has many typos and number of 

words in vocabulary is huge, it was decided to use sub-word tokenization method 

named BPE (byte-pair-coding). BPE tokenizer was trained with a min frequency of 

words equal to 5, which resulted into more than 10 times decrease in a number of 

tokens (30k). For all the experiments, embeddings with 300 dimensions were used. 

Due to analysis of median number of tokens in a review, all the sequences of tokens 

were padded to the length of 300.  
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Early stopping is a regularization technique to avoid overfitting. It works by 

tracking the results of selected criteria through training process and stopping training 

when criteria isn’t positively updated for predefined number of steps. The technique 

is extremely useful in cases, where mislabeled data exists. All the models were 

trained for 20 epochs and early stopping strategy with a tolerance equal to 5 epochs 

of training was utilized. 

As the main technique for regularization the Dropout was applied. Adam op-

timizer with default parameters was used for models training. Some of the models 

utilized embeddings from Word2Vec model, which were pretrained on the BPE to-

kenized dataset. Throughout the experiments, the same random seed was used to 

ensure reproducibility. All the architectures were implemented using Tensorflow 

and Keras frameworks. The following architectures were implemented and tried out:  

Kim-CNN. The architecture proposed by Yoon Kim, which applies parallel 

convolutional layers to embedding layer and concatenates their output before the 

classification one (figure 4.1). The kernel size of convolution can be referred as 

number of unigrams that are sequentially aggregated together. Max pooling along 

with ReLU activation is applied after which convolutional layer. Convolved and 

max pooled representations of embeddings are then flattened and concatenated to-

gether. Before output layer the dropout is used. The following hyper-parameters 

were used: 

• Convolutional kernel size range – [3,4,5].  

• Convolutional filters – 32. 

• Max pooling pool size – 2. 

• Final dropout probability – 0.5. 

Kim-CNN with spatial dropout and more layers. In this experiment, the pre-

vious architecture was modified and made more complex. In particular, spatial drop-

out was applied after the embbeding layer; the kernel size range was extended to the 

following values: 3,4,5,7,9; after each convolutional layer along with max pooling, 

the dropout was used, in order to reduce overfitting; before classification layer, an 
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additional fully-connected layer was utilized; finally, before the classification layer, 

the dropout was applied. 

 

 

Figure 4.1 – Architecture of Kim-CNN model 

 

The following hyper-parameters were used: 

• Spatial dropout probability - 0.1. 

• Convolutional filters - 32. 

• Max pooling pool size - 3. 

• Convolutional kernel size range - [3,4,5,7,9]. 

• Probability of dropout applied after max pooling - 0.1. 

• Dense layer neurons number – 512. 

• Final dropout probability – 0.3. 

LSTM-CNN. Right after the embeddings, LSTM (Long-short-term-memory) 

layer was utilized. Processed sequences from LSTM were then convolved. This 

combination would allow to nonlinearly aggregate processed information from the 

LSTM.  As in previous architecture, spatial dropout was utilized after the embed-

dings layer, same goes for fully-connected layer before classification one. The fol-

lowing hyper-parameters were used: 

• Spatial dropout probability - 0.3. 

• Convolutional filters - 32. 

• Convolutional kernel size - 3. 
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• Max pooling pool size - 2. 

• LSTM neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5. 

CNN-LSTM. Right after the embeddings, convolution is applied similarly to 

Kim- CNN architecture. In this setting, LSTM works with already aggregated infor-

mation of n-grams through the usage of CNN and max pooling.  The following hy-

per-parameters were used: 

• Spatial dropout probability - 0.3. 

• Convolutional filters - 100. 

• Convolutional kernel size - 3. 

• Max pooling pool size - 2. 

• LSTM neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5 

LSTM-Attention. Attention is applied after the LSTM to aggregate processed 

representations of words. A dot product attention was used with tanh nonlinearity.  

Before the classification layer attention output was concatenated with the last state 

of the LSTM. As it was already mentioned, attention can be used to locally explain 

model’s decision to some degree by analyzing importance weights assigned to each 

processed word from LSTM. The following hyperparameters were used: 

• Attention layer neurons number - 128. 

• Spatial dropout probability – 0.3. 

• LSTM neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5 

Bi-LSTM. Instead of applying the LSTM after embeddings, a bidirectional 

version of it is utilized. It allows to access text both from right to left and left to right 

allowing for richer representation of text. The following hyperparameters were used: 

• Spatial dropout probability – 0.3. 
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• Bi-LSTM neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5 

Bi-LSTM CNN2D. Architecture proposed by Zhang et. al, which is based on 

utilization of bidirectional LSTM and processing its outputs using two dimensional 

CNN (figure 4.2). The following hyperparameters were used: 

• Spatial dropout probability – 0.3. 

• Bi-LSTM neurons number – 300. 

• Dropout after LSTM probability – 0.2. 

• Convolutional filters – 100. 

• Convolutional kernel size – (3,3). 

• Max pooling strides – (2,2). 

• Max pooling pool size – (2,2). 

 

Figure 4.2 – Bi-LSTM with two-dimensional convolutional layer and max pooling 

 

Deep LSTM. Instead of applying one LSTM after embeddings, two LSTMs 

were stacked. By applying multiple LSTMs on top of each other it is possible to 

learn richer representations of text. Between LSTMs the dropout was utilized along 
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with batch normalization. Batch normalization was applied to channel axis. The fol-

lowing hyper-parameters were used: 

• Spatial dropout probability – 0.3. 

• LSTM first level neurons number – 256. 

• LSTM first level recurrent dropout – 0.1. 

• LSTM second level neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5. 

Deep Bi-LSTM. Same logic as for deep LSTM, but with substitution of first 

level LSTM layer by a bidirectional one.  

• Spatial dropout probability – 0.3. 

• Bi-LSTM first level neurons number – 256. 

• LSTM second level neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5. 

Deep LSTM Attention. Similar to the deep LSTM, but with usage of attention 

for aggregation of all output states of the second level LSTM. The following hyper-

parameters were used: 

• Attention layer neurons number - 128. 

• Spatial dropout probability – 0.3. 

• LSTM first-level neurons number – 256. 

• LSTM first level recurrent dropout – 0.1. 

• LSTM second level neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5. 

Deep LSTM Attention with Word2Vec embbedings. Same architecture as be-

fore, but instead of training embeddings from scratch, the pretrained ones were fine-

tuned. The hyper-parameters are the same as for deep LSTM Attention. 

CNN Deep LSTM Attention with Word2Vec embbedings. A forge of two ar-

chitectures, in particular Kim-CNN with more layers and Deep LSTM attention. 
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Firstly, parallel convolutions for defined kernel sizes were applied, the concatenated 

result was then passed to LSTM layers and attention. Word2Vec embbedings were 

utilized as in previous architecture. The following hyper-parameters were used: 

• Attention layer neurons number - 128. 

• Spatial dropout probability – 0.3. 

• LSTM first-level neurons number – 256. 

• LSTM first level recurrent dropout – 0.1. 

• LSTM second level neurons number – 128. 

• Dense layer neurons number – 128. 

• Final dropout probability – 0.5. 

• Convolutional filters - 32. 

• Max pooling pool size - 3. 

• Convolutional kernel size range - [3,4,5,7,9]. 

• Probability of dropout applied after max pooling - 0.1. 

• Dense layer neurons number – 512. 

• Final dropout probability – 0.1. 

Deep LSTM Attention with Word2Vec embeddings and class weights. Same 

as deep LSTM attention with Word2Vec embeddings, but class weights were ap-

plied to tackle the problem of class imbalance. Class weights were simply computed 

by scikit-learn library. The hyper-parameters are the same as for deep LSTM Atten-

tion. 

Variations of Deep LSTM Attention with Word2Vec embeddings w.r.t noise-

tolerant objectives. Even after automatic data filtration process, biased samples still 

persisted in the data. Thus, it was decided to try out noise-tolerant training, specifi-

cally techniques relevant to altering the objective of a model. First experiment was 

related to technique named label smoothing [43]. Label smoothing is a regularization 

technique, that accounts for the fact that dataset could have incorrect labels, so that 

maximizing the likelihood of cross-entropy function could hurt the model (formula 

3).  

𝐶𝐸 =  − ∑ 𝑝𝑖 ∗ log (𝑝𝑖)𝑁
𝑖=1     (3) 
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In case of cross-entropy loss applied to the training of the model, 𝑝𝑖 is substi-

tuted by true class identifier (whether 0 or 1), while term log (𝑝𝑖) is transformed into 

logarithm of predicted probability for the class (formula 4). 

 

𝐶𝐸𝑙𝑜𝑠𝑠 = − ∑ 𝑦 𝑡𝑟𝑢𝑒𝑖 ∗ log (𝑦 𝑝𝑟𝑒𝑑𝑖)𝑁
𝑖=1            (4) 

 

Logically, when predicted probability for true class is close to zero overall 

term is increasing. Same logic works in the other direction and the goal of optimiza-

tion is to find minimum of cross-entropy function prior to model’s parameters. Nev-

ertheless, for most cases cross-entropy works well, it could hurt model performance 

in the case of mislabeled data. Such behavior comes from the fact that cross-entropy 

mostly tries to push probabilities for true classes to 1. However, such behavior is not 

always needed. In fact, for correct classification, the probability of true class being 

the biggest among others is enough. Label smoothing regularizes the model by con-

verting hard labels into the soft ones, which helps to deal with overconfident predic-

tions and improve generalization (formula 5).  

 

𝑦 𝑡𝑟𝑢𝑒𝑖
𝐿𝑆 =  𝑦 𝑡𝑟𝑢𝑒𝑖 ∗ (1 − 𝑎) + 𝑎/𝐾        (5) 

 

The mathematical procedure described in formula 4 transforms hard targets 

into soft ones by utilizing alpha parameter, called label smoothing factor. Setting 

label smoothing factor to 0 would result in original hard labels, while label smooth-

ing factor of 1 would result in uniform distribution. It was shown that label smooth-

ing calibrates learned models, so that the confidence of their predictions are more 

aligned with accuracies.  In our experiments we applied label smoothing with label 

smoothing factor equal to 0.1. While label smoothing alters targets for cross-entropy 

objective, there are approaches which utilize noise-robust objectives such as log 

cosh and Huber loss.  
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Log cosh loss is less sensitive to outliers and is simply computed as applying 

cosh and logarithm to difference between predicted and real vector. Log cosh loss 

can be viewed as a smoothed out L1 using L2 around origin (formula 6). 

 

𝐿 = log (cosh(𝑥))           (6) 

 

Huber loss combines L1 and L2 losses by explicitly using L2 in the vicinity 

of the origin where the discontinuity lies, and then switching to L1 a certain distance, 

delta, away from the origin. Both losses are primarily used for robust regression, but 

can also be adopted to classification problems, by simply computing the difference 

between predictions probabilities vector and one-hot vector of target classes. In our 

experiments, we used Huber loss with a delta of 1 (formula 7). 

 

𝐿𝛿(𝑎) = {

1

2
𝑎2 𝑖𝑓 |𝑎| ≤ 𝛿

𝛿 ∙ (|𝑎| −
1

2
𝛿) 𝑒𝑙𝑠𝑒

          (7) 

 

The results of modeling on ratings prediction problem are presented in Table 

4.1, whereas on problem of sentiment analysis – in Table 4.2.  

 

Table 4.1 – Results on a problem of modeling ratings scores 

Approach 
Test f1 

Rozetka 

Test f1 

TripAdvisor 

hotels 

Test f1 

TripAdvisor 

restaurants 

Test f1 

translated 

data 

Test f1 

original 

data 

Averaged 

f1 on all 

domains 

logistic_regression 0.378 0.339 0.367 - - 0.361 

gradient boosted trees 0.26 0.256 0.262 - - 0.259 

lstm_attention 0.474 0.555 0.563 0.530 0.483 0.531 

lstm_cnn 0.482 0.550 0.546 0.526 0.479 0.526 

bilstm_cnn2d 0.497 0.556 0.549 0.534 0.496 0.534 

bilstm 0.483 0.532 0.54 0.521 0.480 0.518 

cnn_deep_lstm_attention_w2v 0.504 0.549 0.546 0.533 0.514 0.533 

cnn_lstm 0.51 0.528 0.541 0.528 0.518 0.526 

deep_bilstm 0.492 0.536 0.548 0.527 0.502 0.525 

deep_lstm 0.491 0.548 0.554 0.532 0.494 0.531 



70 

Continuation of Table 4.1 

deep_lstm_attention 0.498 0.553 0.557 0.538 0.496 0.536 

deep_lstm_attention_w2v 0.516 0.568 0.572 0.552 0.523 0.5521 

deep_lstm_attention_w2v_class_weights 0.493 0.562 0.584 0.546 0.497 0.546 

deep_lstm_attention_w2v_huber 0.511 0.574 0.572 0.553 0.511 0.5526 

deep_lstm_attention_w2v_label_smoothing 0.498 0.566 0.564 0.543 0.501 0.543 

deep_lstm_attention_w2v_log_cosh 0.5 0.57 0.571 0.547 0.505 0.547 

kim_cnn 0.517 0.510 0.534 0.528 0.516 0.520 

kim_cnn_more_layers_spatial_drop 0.513 0.532 0.546 0.535 0.514 0.530 

 

Table 4.2 – Results on a problem of sentiment analysis 

Approach 
Test f1 

Rozetka 

Test f1 

TripAdvisor 

hotels 

Test f1 

TripAdvisor 

restaurants 

Test f1 

translated 

data 

Test f1 

original 

data 

Averaged 

f1 on all 

domains 

logistic_regression  0.562 0.497 0.546 - - 0.535 

gradient boosted trees 0.422 0.39 0.428 - - 0.413 

bilstm_cnn2d  0.685 0.699 0.732 0.709 0.689 0.705 

deep_lstm_attention_w2v 0.691 0.712 0.728 0.712 0.698 0.71 

deep_lstm_attention_w2v_class_weights 0.676 0.7 0.738 0.709 0.673 0.705 

deep_lstm_attention_w2v_huber 0.691 0.721 0.745 0.721 0.695 0.719 

kim_cnn_more_layers_spatial_drop 0.657 0.709 0.734 0.705 0.650 0.7 

 

As it can be seen from results depicted in Table 1, deep_lstm_attention-

w2v_huber achieves best results in terms of test f1 for TripAdvisor hotels domain 

and averaged f1 on all domains. Analyzing the confusion matrix (appendix B.5) of 

best approach on rating estimation, it’s easy to notice that most of the errors are 

relevant to mismatching close categories, that are subjective by nature. This in par-

ticular, implies that trained model is representable of data distribution and can be 

used for further experiments relevant to key phrases retrieval. Interestingly, the ef-

fect of noise-robust objective isn’t very noticeable in rating estimation experiment. 

In fact, the difference between average f1 on all domains between Deep LSTM At-

tention Word2Vec embeddings with cross- entropy and with Huber loss is only 

0.0005 points, whereas the gap is much bigger for the task of sentiment analysis 

(+0.09). The huge influence of pretrained embeddings for sub-words is observed, in 

particular fine-tuning of pretrained Word2Vec embeddings for Deep LSTM with 
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Attention leads to increase in metrics for all domains and results in increase for av-

eraged f1 on reviews estimation problem (+0.161). Such result is possibly influenced 

by the fact that by pretraining Word2Vec embeddings on the task of language mod-

elling, resulting learned vectors better capture the overall structure of language and 

meaning of words. Speaking about Attention, it’s seen that usage of it resulted into 

better f1 across all domains and averaged one (if to compare Deep LSTM Attention 

with Deep LSTM, the gap w.r.t averaged f1 is +0.005). Such behavior is explained 

by the fact, that Attention mechanism learns to weight tokens in the sentence by their 

significance to correct output results. In the case of sentiment analysis and reviews 

estimation, Attention mechanism could learn that hidden state of positive and nega-

tive tokens are the most important (the unraveled results of Attention weighting are 

presented in next chapter). If to compare worst results of deep learning approach 

with best one of machine learning one, the increase in f1 score is 0.159. The gap 

between deep learning-based approaches and machine learning ones suggests that 

order of words and learning of their context are of big matter for both review esti-

mate and sentiment analysis problems. It’s worth mentioning that results of models 

could be improved by using automatic hyper-parameters optimization and manual 

data filtering. The exact configurations of models in terms of their architectures and 

hyper-parameters are available on GitHub.  

 

4.2 Algorithm for key phrases retrieval  

 

After training the models, the best one w.r.t chosen metric was picked for ex-

plainability experiments and construction of an algorithm for key phrases retrieval. 

The algorithm works on both on the level of entity (restaurant/hotel/product) and on 

the level of its review. While working on the level of entity, specific averaging is 

used to summarize most influential phrases across all the reviews for the entity. The 

algorithm for key- phrases retrieval can be logically divided into two steps: retrieval 

of predictions and scores for each token in each review and aggregation of scores 

across all the predictions.  
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Retrieval of scores is the main subject of the experiments. In particular, the 

experiments were conducted towards two methods: LIME and Attention. As the 

trained model operated on BPE tokens, which are essentially sub-words, the opera-

tion of sub-words merging was implemented. For merged sub-words, corresponding 

attention scores were summed-up. Main disadvantage of straightforward attention 

explanation is that its feature scoring gives explanation that is interpreted towards 

the class with highest probability, although certain features can contribute to increas-

ing of probabilities of other classes. On the other hand, LIME provides explanation 

that captures contribution of features towards each class. Speaking of LIME, the 

main disadvantage that we found was disability of using custom tokenizer, which is 

essential for Ukrainian language. Also, while Attention is an in-built mechanism of 

model explainability, LIME uses local surrogate models to interpret predictions, 

which could be not strong enough to understand the data and approximate predic-

tions of much more complex model.  

Having obtained the scores for each token and actual predictions for each re-

view, the aggregation of results was done. The aggregation step works for phrases 

of varying size, supports aggregations relevant to sum and mean and has a function-

ality for diversification of results based on input tokens. For n-grams other than uni-

grams, the scores are summed up or averaged, depending on aggregation algorithm’s 

settings. It’s worth mentioning that aggregation algorithm is agnostic towards the 

method used for scoring tokens and is pretty simple in nature, which makes it easier 

to extend and enhance.  

The full pipeline of extraction for key phrases extraction and reviews summa-

rization works in the following way:  

1. Process the data in the same way, that was used to process the data for 

training the models (add spaces between punctuations, remove next-line character, 

etc.).  

2. Tokenize the data using trained BPE tokenizer.  

3. Make predictions and explanations based on trained model using LIME or 

Attention for each review/text.  



73 

4. Summarize results using aggregation algorithm.  

The aggregation algorithm included logic relevant to generation of scores for 

n-grams, removal of too similar n-grams and aggregation of results for each possible 

rating. While creating n-grams, the scores for words forming the n-grams are aver-

aged together. Results are then either summed up or averaged for same n-grams for 

same labels.  It’s rather important to use removal of similar n-grams to get better 

diversification of results. Diversification is done by grouping similar n-grams w.r.t 

intersection of subphrases on the level of each possible rating. After grouping pro-

cedure, only one n-gram in group which has the highest importance score is left. It 

was empirically found out, that model tended to pay much attention to punctuation 

relevant to end of sentence. In order to get rid of such bias two options were incor-

porated: 

1. Split paragraph into sentences and finding n-grams inside each sentence 

separately. This option provided a tolerance towards n-grams with high score con-

sisting of multiple words from different sentences. Despite, the overall score of such 

n-grams could be pretty high, their construction violates explicit text structure and 

thus isn’t comprehensive. 

2. Filtration of punctuation characters while computing n-grams. Although 

some punctuation characters like exclamation mark or smiles could provide some 

information inside key-phrases, it was decided to not include them because of intrin-

sic bias of attention mechanism towards them. 

The list of aggregation algorithm’s hyper-parameters along with short descrip-

tion for each of them is depicted below: 

• n_gram_list – list of n-grams for which generation should be done. 

• func_agg_n_gram – function to aggregate scores for n-grams based uni-

grams, either “mean” or “sum”. 

• func_agg_overall – function to aggregate scores for same n-grams, either 

“mean” or “sum”. 

• diversify – diversification power related to number of tokens to use for du-

plicates filtering, integer is expected as input. Zero value is relevant to no filtration. 
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• to_tokenize_sentences – whether to tokenize paragraphs into sentences be-

fore getting n-grams. 

• to_tokenize_by_punct – whether to additionally tokenize sentences based 

on punctuation. 

• to_del_punct – whether to delete punctuation. 

• top_n – top results to return back for each rating. 

• min_thr – minimal value of score for returning the phrase. 

It’s worth mentioning that during comparison of methods in terms of key-

phrases retrieval ability, both options were disabled, as they had no impact on com-

parison. 

The experiments to decide which method is more suitable for key-phrases re-

trieval were conducted. During experiments the aggregation method’s parameters 

were the following: n-gram was set to be equal to 4, both aggregation for phrase 

scores and overall scores were set to mean, diversification was used with overlap of 

2 words, for LIME method top-15 phrases per label were retrieved, whereas for At-

tention – top-20. The experiments were made towards best model trained for rating 

estimation. For experiments, a new dataset of diverse entities in terms of their aver-

age rating across three domains was constructed. To compare results of LIME and 

Attention explanation, precision at K metric was used. To retrieve information about 

global performance of phrases retrieval for specific entity, average precision at K 

was used:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑎𝑡 𝐾 =
1

𝐷
∑

𝐾𝑟

𝐾
,   (8) 

 

where  𝐷 - number of reviews for specific entity, 𝐾- overall number of phrases, 𝐾𝑟 

– number of relevant phrases. 

Precision at K can be used in two setups:  

1. With labeled data, in which relevant phrases for each entity are labeled.  

This setup gives an opportunity to automatically compute the metric. 

2. With human evaluation, when results of algorithm are checked by human 

in terms of their relevance. 
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To evaluate algorithm proposed in current work, the second approach was ap-

plied. The phrase (n-gram) was assumed relevant if it was clear and reflective of 

predicted category (figure 4.3). 

 

 

Figure 4.3 - Example of LIME and Attention explanation for one of the entities. In 

green – positive phrases are shown, in red – negative. For ratings <3 only negative 

phrases are relevant, for >4 – only positive, for 3 – both negative and positive. Re-

sults were validated towards summarization of all reviews w.r.t specific entity and 

categorized by averaged rating groups (<3, 3 and >=4). 
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As it can be seen from Table 4.3, Attention method achieves better Precision 

at K averaged on all rating groups, which was used as main metric. It’s worth men-

tioning that LIME has better coverage in terms of number of phrases, thus it’s rec-

ommended to use the combination of methods while retrieving key phrases. The 

algorithm for phrases retrieval can easily be enhanced based on POS tags, which 

could help to obtain only those phrases which suit specific patterns (e.g. Noun-Ad-

jective, Adjective-Noun-Verb, etc.).  

 

Table 4.3 – Results on problem of key-phrases retrieval 

Approach 

Precision at K 

for average 

rating <3 

Precision at K 

for average 

rating 3 

Precision at K for 

average rating 

>=4 

Average 

Precision 

at K 

LIME 0.2806 0.3292 0.221 0.276 

Attention 0.308 0.3009 0.266 0.291 

 

Even though the algorithm is constructed to work with pull of reviews w.r.t 

specific entity (restaurant, hotel, product), it’s much easier to make qualitive com-

parison and analysis by utilizing of key-phrases retrieval for one review. In this sce-

nario, both methods were tried out on reviews from each domain which were unseen 

by model during training. It’s worth mentioning, that the application of methods to 

one sample of reviews instead of bunch of them results in decrease in performance 

for key-phrases retrieval thus implying more thorough hyperparameters selection for 

aggregation stage.  The results of such retrieval for Attention mechanism are de-

picted on figure 4.4, while for LIME on figure 4.5. 

If to compare results of algorithms inference on one review, which are de-

picted on aforementioned figures, it’s pretty clear that for one review LIME provides 

better categorization of key-phrases which can be useful in terms of ABSA (Aspect-

Based-Sentiment-Analysis). Attention at the same time provides general infor-

mation of most influential key-phrases towards the predicted label. As it was already 

mentioned, the described method for aggregation has number of hyper-parameters 

that should be tweaked w.r.t specific use-case. It was empirically found that number 
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of n-grams should be increased for longer reviews, as it’s more probable that such 

texts contain more complicated language structures.  

 

 

Figure 4.4 – Results of applying Attention-based key-phrases retrieval  
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Figure 4.5 - Results of applying LIME-based key-phrases retrieval  

 

As it was already mentioned, the approach utilizes BPE tokens and explaina-

ble AI allowing it to adopt to data and domains that weren’t seen during training. In 
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the following experiment the key-phrases retrieval is applied to reviews of three dif-

ferent domains: books, attractions and movies reviews. As in the previous experi-

ment, key-phrases retrieval is applied only to one review at the time. In this experi-

ment, both rating estimation and Attention-based key-phrases retrieval are tested. 

The results are depicted on figure 4.6. 

 

 

Figure 4.6 – Results of applying Attention-based key-phrases retrieval for unseen 

domains 
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As it can be seen from the experiment, trained model does a good job in both 

predicting rating for unseen domains and retrieving of key-phrases. The empirical 

results suggest that presented approach can be utilized to some extent for rating es-

timation and key-phrases retrieval without a need for fine-tuning it to new data.  

 

4.3 Comparison to most similar analog 

 

Finally, it’s beneficial to summarize differences between current work and the 

most similar analog, in particular master thesis of Bobenko. Although no particular 

comparison in terms of prediction capability of models wasn’t provided due to the 

difference in modeling problems and metrics, the differences in terms of overall ap-

proach are highlighted (table 4.4).  

 

Table 4.4 – Comparison of current work with the most similar analog 

Characteristic Current work Bobenko’s work 

Number of domains 3 1 

Number of data sources 3 2 

Number of samples ~671k ~128k 

Modeling problems Sentiment analysis, review 

rating estimation 

Sentiment analysis 

Tokenization method BPE  Word tokenizer 

Number of unique tokens 30k 8.238.336 

Files needed for inference Tokenizer, model Model, table of 

positive and nega-

tive n-grams 

Key-phrases retrieval method LIME/Attention TF-IDF/PMI 

Operating level Paragraph Sentences 

Handling of OOV tokens + - 

Data filtering + - 

Contextualization + - 
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As it can be seen from aforementioned table, the gathered dataset is this work 

is much more versatile than the one in Bobenko’s work and covers 3 different data 

sources and 3 domains. Logically, models trained on such dataset are capable of 

understanding and handling more cases. Furthermore, even though the data is human 

generated meaning that some samples have discrepancy between reviews and their 

rating, no filtration was done in concurrent work. Speaking of efficiency, by utilizing 

BPE tokenization current model’s embedding matrix needs to store only 30k unique 

tokens which is in ~274 times lower than in Bobenko’s work. By applying BPE 

tokenization, current model is capable of processing even those words and phrases 

which were absent in dataset making it more adaptive to new data. For final infer-

ence only model itself and tokenizer is needed which is far more memory efficient 

than storing model with embeddings for each word along with table of positive and 

negative n-grams. Finally, by utilizing Attention/LIME for key-phrases retrieval pre-

sented approach provides more contextualization than retrieval from prebuilt n-

grams in table. To summarize, presented approach is more efficient and adaptive to 

new data. 

 

4.5 Conclusions  

 

The process of ratings estimation and modelling of sentiment based on col-

lected reviews textual data along with creation of technology for key-phrases re-

trieval is described in this chapter. The evaluation of proposed methodologies to 

accomplish the task w.r.t predefined metrics is conducted. The analysis of evaluation 

results for modelling showed that pretraining of word-embeddings, utilization of 

noise-tolerant objectives and usage of attention mechanism improves results on all 

the domains on both tasks.  

Although, conducted experimenters revealed that in general, attention mech-

anism provides better results than LIME, its recommended to experiment with both 

for a specific use-case. 
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5 THE ECONOMIC SECTION 

 

5.1 The technological audit of the developed system for searching key 

phrases in Ukrainian-language feedback 

 

In conditions of intense competition, text analysis holds tremendous im-

portance for companies monitoring mass media concerning specific events and busi-

nesses. This is vital for generating analytical reports and offering business insights 

that delve into sentiments regarding particular events or companies within a defined 

timeframe. Typically, sentiment analysis provides only a general overview of an 

event or company, but it doesn't address the underlying causes that influenced such 

outcomes.  

To address this, sentiment analysis or reviews rating assessment is required. 

Considering the challenge of generalizing reviews, it's crucial for analysis methods 

to account for sarcasm, word order, and other intricate linguistic patterns, subjective 

nature of reviews, numerous errors, and typos in words, etc., which might lead to a 

considerable number of diverse tokens that can influence the reliability of drawing 

conclusions. 

Hence, prior to our master's thesis, the task was set to investigate the utiliza-

tion of deep learning algorithms and classical machine learning to study conditional 

data distribution and apply artificial intelligence techniques to extract the most sig-

nificant textual features in the Ukrainian language. 

As a result, we selected, trained, and evaluated algorithms for reviewing rat-

ings and sentiment analysis. We chose explanatory AI algorithms for extracting key 

phrases in the Ukrainian language and constructed an algorithm for key phrase ex-

traction, evaluating it in comparison with the defined explanatory AI algorithms. 

To assess the level of commercial potential of our developed system for 

searching key phrases in Ukrainian-language feedback using artificial intelligence 

technologies, we conducted a technological audit by inviting three renowned ex-

perts: a Doctor of Technical Sciences, a Professor, Oleh BISIKALO Candidate of 
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Technical Sciences and Associate Professor Maria BARABAN, Candidate of Tech-

nical Sciences and Associate Professor Volodymyr HARMASH. 

The assessment of the commercial potential of our developed system for 

searching key phrases in Ukrainian-language feedback using artificial intelligence 

technologies was conducted based on the criteria summarized in Table 5.1. 

 

Table 5.1 – Assessment criteria for evaluating the commercial potential of 

any development and their score rating (on a scale of 0 - 1 - 2 - 3 - 4 points) 

Evaluation Criteria and Scores (on a 5-point scale) 

Criterion 0 1 2 3 4 

Technical Feasibility of the Concept: 

11 The 

credibility of 

the concept is 

not 

confirmed. 

 

Concept 

validated by 

expert opinions 

Concept 

validated by 

calculations 

Concept 

tested in 

practice 

Product's 

operational 

capability 

verified in 

real-world 

conditions 

Market Advantages (Disadvantages): 

22 Numerous 

analogs in a 

small market 

Few analogs in a 

small market 

Several analogs 

in a large 

market 

One analog in 

a large 

market 

No analogs for 

the product in 

a large market 

33 The price of 

the product is 

significantly 

higher than 

that of 

analogs 

The price of the 

product is 

slightly higher 

than that of 

analogs 

The price of the 

product is 

approximately 

equal to the 

prices of 

analogs 

The price of 

the product is 

slightly lower 

than that of 

analogs 

The price of 

the product is 

significantly 

lower than that 

of analogs 

44 Technical 

and consumer 

properties of 

the product 

are 

significantly 

worse than 

those of 

analogs 

The technical 

and consumer 

properties of the 

product are 

slightly worse 

than those of 

analogs 

The technical 

and consumer 

properties of the 

product are on 

par with those 

of analogs 

The technical 

and consumer 

properties of 

the product 

are slightly 

better than 

those of 

analogs 

The technical 

and consumer 

properties of 

the product are 

significantly 

better than 

those of 

analogs 
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Continuation of Table 5.1 

Evaluation Criteria and Scores (on a 5-point scale) 

Criterion 0 1 2 3 4 

Market Prospects 

 

55 Operational 

costs are 

significantly 

higher than 

those of 

analogs 

Operational 

costs are slightly 

higher than 

those of analogs 

Operational 

costs are on par 

with the 

operational 

costs of analogs 

Operational 

costs are 

slightly lower 

than those of 

analogs 

Operational 

costs are 

significantly 

lower than 

those of 

analogs 

66 The market is 

small and 

lacks positive 

dynamics 

The market is 

small but shows 

positive 

dynamics 

Medium-sized 

market with 

positive 

dynamics 

Large and 

stable market 

Large market 

with positive 

dynamics 

77 Active 

competition 

from major 

companies in 

the market 

Active 

competition 

Moderate 

competition 

Slight 

competition 

No 

competitors 

Practical Feasibility 

88 Lack of 

experts in 

both 

technical and 

commercial 

implementati

on of the idea 

Requires 

hiring experts 

or significant 

investment of 

time and 

money in 

training 

existing 

personnel 

Minor training 

required for staff 

and slight 

expansion of the 

team 

Minor training 

required for staff 

Experts 

available 

both 

technically 

and 

commerciall

y 

 

  



85 

Continuation of Table 5.1 

Evaluation Criteria and Scores (on a 5-point scale) 

Criterion 0 1 2 3 4 

99 Significant 

financial 

resources 

needed, but 

absent. Lack of 

funding 

sources for the 

idea 

Slight financial 

resources needed, 

but no funding 

sources available 

Substantial 

financial 

resources 

needed, funding 

sources exist 

Slight financial 

resources 

needed, 

funding 

sources exist 

No need for 

additional 

funding 

110 Requires 

development 

of new 

materials 

Materials 

required are used 

in military-

industrial 

complex 

 

Expensive 

materials needed 

 

Accessible and 

inexpensive 

materials 

needed 

 

All materials 

for idea 

implementatio

n are well-

known and 

have long been 

used in 

production 

111 Implementatio

n timeline 

exceeds 10 

years 

 

Implementation 

timeline exceeds 

5 years. Return 

on investment 

period exceeds 10 

years 

Implementation 

timeline from 3 

to 5 years. 

Return on 

investment 

period exceeds 5 

years 

Implementatio

n timeline is 

less than 3 

years. Return 

on investment 

period from 3 

to 5 years 

Implementatio

n timeline is 

less than 3 

years. Return 

on investment 

period is less 

than 3 years 

112 Necessary 

development 

of regulatory 

documents and 

acquiring 

numerous 

permits for 

production and 

product 

implementatio

n 

Requires 

acquiring 

numerous permits 

for production 

and product 

implementation, 

demanding 

significant costs 

and time 

The process of 

obtaining 

permits for 

production and 

product 

implementation 

requires minor 

costs and time 

Only 

notification to 

relevant 

authorities 

about 

production and 

product 

implementatio

n is necessary 

No regulatory 

constraints on 

production and 

product 

implementatio

n 

 

Invited experts have evaluated our developed system for searching key 

phrases in Ukrainian-language feedback using artificial intelligence-based 

technologies quite highly (refer to Table 5.2): 
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Table 5.2 – Evaluation Results of the Commercial Potential of the 

Development 

Criterias Last name, initials of the expert 

Oleh BISIKALO Maria BARABAN Volodymyr HARMASH 

Scores given by the experts:  

1 3 4 4 

2 4 3 4 

3 3 3 3 

4 4 4 4 

5 3 3 3 

6 3 3 4 

7 3 4 3 

8 4 4 3 

9 3 3 4 

10 4 4 3 

11 4 3 4 

12 3 4 4 

Sum of 

grades  

41 42 43 

 

The arithmetic mean (СБ), of the scores assigned by the experts was:  

3

і

1

Б
41 42 43 126

СБ 42,00
3 3 3

+ +
= = = =


. 

The overall level of commercial potential for any development was determined 

based on the criteria outlined in Table 5.3 [44]. 

Guided by the recommendations in Table 5.3, it can be concluded that the 

developed system for searching key phrases in Ukrainian-language feedback using 

artificial intelligence technologies was evaluated by experts at 42 points, indicating 

that named development possesses a commercial potential categorized as "high". 

 



87 

 

Table 5.3 – Levels of Technical and Commercial Potential of the Development 

The arithmetic mean of scores 

calculated based on the experts' 

conclusions. 

The level of technical and 

commercial potential of the 

development.  

0  – 10 Low 

11 – 20 Below average 

21 – 30  Average 

31 – 40 Above average 

41 – 48 High 

 

This is due to the development being based on cross-industry data aggregation 

and a dataset containing Ukrainian feedback. It addresses the challenge of evaluating 

contributors' ratings, analyzing their sentiments expressed in Ukrainian, among 

other aspects. Moreover, it solves the problem of automatic extraction of key phrases 

and summaries specific to the Ukrainian language. 

 

5.2 The cost estimation for developing a system to search for key phrases in 

Ukrainian language within feedback using artificial intelligence technologies. 

 

During the work, the following expenses were incurred: 

1. Primary salary of executors Зо: 

 

t
Т

М
З

р

о =  uah,                                                (5.1) 

 

Where М represents the monthly base salary of a specific executor in UAH;  

In 2023, the salary ranges for researchers fall within (6700…26000) 

UAH/month; Тр –  indicates the number of working days in a month; let’s assume 

Тр = 21 days.  



88 

The calculations of the primary salary of the executors will be summarized in 

Table 5.4: 

 

Table 5.4 – Calculation of the primary salary of executors (developers) 

 

Position title of the 

executor 

Monthly base 

salary, UAH 

Payment per 

working day 

(or per hour), 

UAH 

Number of 

working 

days 

Remuneration 

costs, UAH  

Notes 

1. Scientific supervisor of 

the Master's qualification 

work 

22250 1059,52 20 hrs ≈ 3532 6 hrs per day 

2. Student developer - 

Master's student 

6700 319,05 75 days ≈ 23929  

3. Consultant in the eco-

nomic section 

19800 942,86 1,5 hrs ≈ 236 6 hrs per day 

4. Other consultants 18500 880,92 3,5 days  ≈ 3083  

Total 30 780 

 

2. Additional remuneration of the executors Зд is calculated as (10…12 of the 

primary salary of the executors, which means: 

 

од З)12,0...1,0(З = .                                                 (5.2) 

 

For our case, we will obtain: 

 

Зд = 0,113 × 30780 = 3478,14 ≈ 3479 uah. 

 

3. Accruals to the payroll Нзп are calculated by the formula: 

 

                                             ,
100

)ЗЗ(Н дозп


+=                                             (5.3) 

 

where Зо – primary salary of the executors, UAH; 
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Зд – additional remuneration of the executors, UAH; 

β – The rate of the unified social security contribution for mandatory state 

social insurance; β = 22%. 

Then: 

 

Нзп = (30780+3479) × 0,22 = 7536,99  ≈ 7537 uah. 

 

4. Material expences М are calculated per each material type: 

 

  −=
n

1

n

1
вiііі ЦВКЦНМ   uah,                                     (5.4) 

 

Where Нi – material expences per i designation, kg; Цi – cost of a material i, 

uah/kg.; Кi – transportation expences coeficient, Кі = (1,1…1,15); Вi – material dis-

posal mass per material i, kg; Цв – material waste price per material i, uah/kg; n – 

total number of used materials. 

5. The expenses on components К are calculated by the formula: 

 

 =
n

1
iii КЦНК  uah,                                                   (5.5) 

 

Where Ні – the quantity of components і-th type, pcs.; Ці – price per compo-

nent of і-th type, uah; Кi – transportation expences coeficient, Кі = (1,1…1,15); n – 

total number of components. 

Following the analogy with other developments, the cost of all utilized mate-

rial resources is approximately 3000 UAH. 

6. Depreciation (A) of equipment, computers, and premises A can be calcu-

lated by the formula: 
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12

Т

100

НЦ
А а 


=  uah,                                                   (5.6) 

 

Where Ц – the total book value of fixed assets in UAH;  

На – the annual depreciation rate: На = (2...25)%; 

Т- is the period of equipment, premises, etc. the usage, in months. 

The calculations made have been summarized in Table 5.5: 

 

Table 5.5 – Calculation of depreciation deductions 

Equipment, 

premises, etc 

Book 

value, 

UAH. 

Depreciat

ion rate, 

% 

Period of 

usage, months. 

Depreciation 

deductions, UAH 

1. Personal comput-

ers, printers, etc 

99900 25 3,25 (70%) 4734,84 

2. Department and 

faculty premises 

51600 2,5 3,25 (65%) 222,09 

Total А = 4956,93 ≈ 4957 

 

7. Expenses for electrical power Be are calculated using the formula: 

 

                                     
д

п
e

К

КФПB
B


= ,                                               (5.7) 

 

 

where В – price of 1 kilowatt-hour. Electricity in 2023 W ≈ 4,5 uah/kilowatt; 

П – The installed capacity of the equipment kWt; П = 1,05 kWt; 

Ф – actual number of equipment operating hours, hours.  

Assume, that Ф = 300 hrs; 

Кп – power usage coefficient; Кп  < 1 = 0,76.  

Кд – Useful action coefficient, Кд = 0,61. 
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Then the expences for electricalpower:  

 

п
e

д

B П Ф К 4,5 1,05 300 0,76
B 1766,96 1767

К 0,61

     
= = =   uah. 

 

8. Other expences Він  can be estimated as (50…300)% from the initial salary 

of the performers: 

 

                                   Він = Кін × Зо = (0,5..3,0) × Зо.                                             (5.8) 

 

In this case let’s assume that Кін = 1,6. Then: 

 

Він = 1,25 × 30780 = 38 475 uah. 

 

9. Total sum of all the previous expences gives the total expences of the cur-

rent stage execution by the Student developer - Master's student – В.  

In this case: 

 

В = 30780 + 3479 + 7537 + 3000 + 4957 + 1767 + 38475 = 89995 uah. 

 

10. The calculation of the total costs for the development and final refinement 

of the work we have been done is carried out according to the formula:  

 

                                                            


=
В

ЗВ ,                                                      (5.9) 

 

Where   - coefficient characterizing the stage of completion of this work. 

Since our development still requires refinement, it can be assumed that   ≈ 0,65. 
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Then: 
89995

ЗВ 138453,85
0,65

= =  uah or approximately 139 000 uah. 

 

So, the projected total expenses for the system we have developed for search-

ing key phrases in Ukrainian reviews based on artificial intelligence technologies 

amount to approximately 139,000 hryvnias. 

 

 

5.3 Calculation of the economic effect from the potential commercialization 

of the developed system for searching key phrases in Ukrainian language reviews 

based on artificial intelligence technologies 

 

The market analysis indicates that our developed system for identifying key 

phrases in Ukrainian language reviews using artificial intelligence technologies will 

have substantial demand in internet platforms and stores (such as Prom, Rozetka), 

companies that contain and analyze reviews regarding restaurant businesses and ho-

tels (Booking.com, TripAdvisor), media monitoring companies, and others. Each of 

these entities will have the ability to receive automated distribution of reviews and 

automation in the search for factors that most influence the average assessment of 

various phenomena, events, companies, etc. (for example: regarding positive and 

negative product qualities, the balance between price and quality, etc.). 

Therefore, if our development is implemented starting from January 1, 2024, 

its results will manifest throughout 2024, 2025, and 2026  

The forecast for increasing demand for our development by year is as follows: 

a) 2023 - 1 unit (our development); 

b) 2024 - +3 units compared to the base year (i.e., 3 clients); 

c) 2025 - +6 units compared to the base year (i.e., 6 clients); 

d) 2026 - +10 units compared to the base year (i.e., 10 clients). 
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According to expert conclusions, the potential market price for our develop-

ment is approximately $26,000, or roughly 1,000,000 Ukrainian Hryvnia. In con-

trast, similar (though not identical) developments that perform the functions men-

tioned earlier are priced in the market at up to 800,000 Hryvnia.  

The potential increase in net profit іП , from taking the product to the market 

will amount to:  

 

                     = іП )
100

1()NЦNЦ( іоо

n

1


−+ ,                (5.10) 

 

Where Цо – an improvement in the primary qualitative indicator from im-

plementing the outcomes of our development in this year. In our case, this is:  

ΔЦо = 1000 – 800 = + 200 000 uah;  

N – the main quantitative indicator that defines the scope of activities in the 

year before the implementation of the development results; N = 1 pcs.; 

N – improvement of the main quantitative indicator due to the implementa-

tion of the development results.  

This improvement will be as follows: in 2024 - +3 units, in 2025 - +6 units, 

and in 2026 - +10 units. 

Цо - the primary qualitative indicator (i.e., the price) determining the scope of 

activity in the year following the implementation of the development results uah; 

Цо= 1000 thousand uah; 

n – total number of years, during which the positive results from development 

implementation is expected; in this scenario n = 3; 

  – The coefficient that takes into account the value-added tax (VAT) pay-

ment; 8333,0= ;  

  – The coefficient that considers the product's profitability. It is recom-

mended to assume = (0,2...0,5); set = 0,5; 

  – the corporate tax rate. In 2023-26 years   = 18% (assumption).  
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The potential increase in net profit П1 for a potential investor during the first 

year after the possible implementation of our development (2024), it would be: 

 

1

18
П [200 1 1000 3] 0,8333 0,5 (1 ) 1094

100
 =  +     −   thousand uah. 

 

For the potential investor during the second year after the possible implemen-

tation of our development (2025), it would be calculated similarly: 

 

2

18
П [200 1 1000 6] 0,8333 0,5 (1 ) 2119

100
 =  +     −   thousand uah. 

 

The potential increase in net profit П3 for a potential investor during the first 

year after the possible implementation of our development during the third year 

(2026) is totalled: 

 

3

18
П [200 1 1000 10] 0,8333 0,5 (1 ) 3485

100
 =  +     −   thousand uah. 

 

The total value of the increased net profits from the potential implementation 

and commercialization of our development: 

 

             
+


=

т

1
t

і

)1(

П
ПП ,                                          (5.11) 

 

Where іП  – the increase in net profit in each of the years when the results 

of the completed and implemented work are manifested is as follows; 

т – the time period during which the results of the implemented work are man-

ifested is for 3 years, represented by t=3 years.; 

  – the discount rate. Let’s assume   = 0,10 (10%); 
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t – the period of time from the initiation of the development of the system for 

searching key phrases in Ukrainian language feedbacks based on artificial intelli-

gence technologies to the moment when potential net profits are obtained by the 

potential investor can be termed as the "development-to-profit period" or the "in-

vestment gestation period.  

Then, the present value of the growth of all potential net profits (PP) that a 

potential investor can gain from the commercialization of our development would 

be: 

 

2 3 4

1094 2119 3485
ПП

(1 0,1) (1 0,1) (1 0,1)
= + +

+ + +
≈ 904 +1592 +2380  = 4876 000 uah. 

 

The present value of investments (PV) that should be allocated towards the 

implementation of our development would be: PV = (1,0…5,0) × Взаг.  

In our case PV = (1,0…5,0) × 139 = 5 × 139 = 695 thousand uah. 

The absolute effect of potential investments made in the implementation of 

our development would be Еабс.  

 

                                                 Еабс = ПП – PV,                                                (5.12) 

 

The notation " ПП" stands for the present value of the increase in all net profits 

for the potential investor from the potential commercialization of the development, 

expressed in currency (hryvnias). 

PV – The present value of investments (PV) amounts to 695,000 hryvnias.  

The absolute effect from the potential implementation of our development will 

be: 

Еабс = 4876 – 695 = 4181 000 uah.  

 

Next, we will calculate the internal rate of return (IRR) of the invested capital: 
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       1
PV

Е
1Е жТ абс

в −+= ,                                          (5.13)          

Where Еабс – the absolute effect of the invested capital; Еабс = 4181 000 uah; 

PV – the present value of the initial investments PV = 695 000 uah;  

Тж – development lifecycle, years.  

Тж = 4 years (2023, 2024, 2025, 2026 years) 

 

In this case it would be: 

 

4 44
в

4181
Е 1 1 1 6,0158 1 7,0158 1 1,627 1 0,627 62,7%.

695
= + − = + − = − = − = =   

 

Next, let's determine the minimum profitability, below which it would not be 

profitable for the potential investor to engage in the commercialization of our devel-

opment. The minimum profitability or the minimum (barrier) discount rate  мін  is 

determined by the formula:  

 

                           =мін  d + f,                                             (5.14) 

 

where d – the weighted average rate on deposit operations in commercial 

banks; in 2022-2023 in Ukraine d = (0,10...0,12); 

f  – indicator characterizing the riskiness of investments;  

f  = (0,1...0,50). Assume f = 0,30. 

In this case:  

мін = 0,12 + 0,30 = 0,42  або мін = 42%. 

 

Given the magnitude Ев = 62,7%  >  мін = 42%, then a potential investor may 

indeed be interested in financing and commercializing the development. Next, we 
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will calculate the payback period for the funds invested in the potential commercial-

ization of the system developed for searching key phrases in Ukrainian language 

feedback using artificial intelligence technologies. 

The payback period Ток is calculated by formula: 

 

 
в

ок
Е

1
Т = .                                                        (5.15) 

 

In this case the payback period Ток: 

 

ок

1
Т 1,59

0,627
= =  years < 3 years,  

 

this indicates the potential viability of commercializing our developed system 

for searching key phrases in Ukrainian feedback using artificial intelligence technol-

ogies. 

Further, a simulation was conducted to model the relationship between the 

internal rate of return of potential investments and the inflation rate in the country.  

If the inflation rate in the country increases to 20%, then: 

 2 3 4

1094 2119 3485
ПП

(1 0,2) (1 0,2) (1 0,2)
= + +

+ + +
≈ 760 +1226 +1680  = 3666 000 uah. 

The absolute effect from the potential implementation of our development will 

amount to: 

 

Еабс = 3666 – 695 = 2971 000 uah.  

 

Next, we will calculate the internal rate of return (IRR) of the invested invest-

ments: 
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       1
PV

Е
1Е жТ абс

в −+= ,                                          (5.13)          

 

where Еабс –absolute effect of the invested investments; Еабс = 2971 000 uah; 

PV – the present value of the initial investments PV = 695 000 uah;  

Тж – development lifecycle, years.  

In this case: 

 

4 44
в

2971
Е 1 1 1 4,2748 1 5,2748 1 1,515 1 0,515 51,5%.

695
= + − = + − = − = − = =   

 

Given magnitude Ев = 51,5%  > мін = 42%, then the potential investor might 

be interested in financing and commercializing our development in principle. If the 

country's inflation rate rises to 30%, then: 

  

2 3 4

1094 2119 3485
ПП

(1 0,3) (1 0,3) (1 0,3)
= + +

+ + +
≈ 647 +965 +1220  = 2832 000 uah. 

 

The absolute effect from the potential implementation of our development will 

be: 

Еабс = 2832 – 695 = 2137 000 uah.  

 

Next, let's calculate the internal rate of return of the invested investments (Ев): 

       1
PV

Е
1Е жТ абс

в −+= ,                                          (5.13)          

where Еабс – the absolute effect from the potential implementation; Еабс = 2137 

000. uah; 

PV – the present value of the initial investments PV = 695 000 uah;  

Тж development lifecycle, years.  
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In this case: 

4 44
в

2137
Е 1 1 1 3,0748 1 4,0748 1 1,42 1 0,42 42,0%.

695
= + − = + − = − = − = =   

 

Given Ев = 42,0%  ≈ мін = 42%, then the potential investor might be interested 

in funding and commercializing our development in principle.  

If the inflation rate in the country increases to 40%, then:  

 

2 3 4

1094 2119 3485
ПП

(1 0,4) (1 0,4) (1 0,4)
= + +

+ + +
≈ 558 +722 +907  = 2187 000 uah. 

 

The absolute effect from the potential implementation of our development will 

be: 

Еабс = 2187 – 695 = 1492 thousand uah. 

 

Next, let's calculate the internal rate of return of the invested investments (Ев): 

       1
PV

Е
1Е жТ абс

в −+= ,                                          (5.13)          

 

where Еабс – the absolute effect from the potential implementation; Еабс = 1 

492 000 uah; 

PV – the present value of the initial investments PV = 695 000 uah;  

Тж development lifecycle, years.  

In this case: 

 

4 44
в

1492
Е 1 1 1 2,1468 1 3,1468 1 1,332 1 0,332 33,2%.

695
= + − = + − = − = − = =   

 

Given magnitude Ев = 33,2%  < мін = 42%, then a potential investor may not 

be interested in the commercialization of our development. 
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The calculations made in the form of graphs are presented in Figure 5.1. 

 

 

Figure 5.1 – Modeling the relationship between the internal rate of return of 

potential investments and the inflation rate in the country (10%, 20%, 30%, and 

40%). 

 

The analysis of the charts in Figure 5.1 shows that at an inflation rate of 10%, 

the internal rate of return of investments is Ev = 62.7%, which exceeds the threshold 

value min = 42%. Therefore, the commercialization of our development may be 

worthwhile. At an inflation rate of 20%, the internal rate of return of investments is 

Ev = 51.5%, which also exceeds the threshold value min = 42% The analysis reveals 

that at an inflation rate of 30%, the internal rate of return of investments is Ev = 

42.0%, which equals the threshold value min = 42%. Hence, the commercialization 

of our development can also be reasonable. 

However, at an inflation rate of 40%, the internal rate of return of investments 

allocated in the commercialization of our development amounts to Ev = 33.2%, 

which falls below the threshold value min = 42%. Therefore, the potential investor's 

commitment to commercialize our development might be in question. However, a 

final decision on this matter requires additional calculations (possibly reducing the 

investment risk level, increasing the demand for the development, enhancing the 

selling price of the development, etc.). 
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The outcomes of the performed economic part of the master's qualification 

work are summarized in the table 5.6. 

 

Table 5.6 – The outcomes of the performed economic part 

Indicators Defined in 

Technical 

task 

Attained in the 

Master’s thesis 

Conclusion 

1. Development 

expenses 

Less than 

150 000 uah 

139 000 uah. Achieved 

2. Absolute effect 

from implementing 

the development, 

thousands of UAH 

More than 

≈ 4000 

000uah  

 

4 181 000 uah 

(with 10%-inflation) 

 

Completed 

3. Internal Rate of 

Return on 

Investments, % 

More than 

42% 

62,7% 

(with 10%-inflation) 

Achieved 

4. Payback Period 

of Investments, 

years 

Less than in 

3 yrs 

1,59 yrs Completed 

 

Thus, the key technical and economic indicators of the developed system for 

searching key phrases in Ukrainian language within feedbacks using artificial intel-

ligence technologies, as defined in the technical task, have been achieved. 
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CONCLUSIONS 

 

A new approach to key-phrases retrieval for Ukrainian language is presented 

in this work. A comprehensive analysis of previous work, competitive approaches 

and problem at hand was conducted, confirming a need for more adaptable and ef-

fective approach. In order to tackle the problem, a method based on training discrim-

inative model and reverse-engineering of its decision process based on explainable 

AI was provided. The creation of technology for key-phrases retrieval required to 

solve the list of subtasks, including analysis and choosing of programming language 

and libraries, data collection, processing, modelling and incorporation of explainable 

AI.  

Based on analysis of programming languages and tools, it was decided to uti-

lize Python language along with the task-specific libraries. Due to the requirement 

of convenient integration and adaptability to unseen data, BPE tokenization was ap-

plied along with Word2Vec embeddings.  

The data was collected from TripAdvisor and Rozetka by utilizing web-scrap-

ping techniques. Due to incorporated noise, the data was processed and automati-

cally filtered by applying machine learning. As the result a medium-size dataset of 

Ukrainian reviews and corresponding ratings consisting of 662907 samples was pre-

pared. Based on data analysis, the impactful insights were gathered and incorporated 

into the modeling stage.  

During modeling stage, list of models was tried out, resulting into models 

trained for sentiment analysis and reviews rating estimation. In order to fight over-

fitting and noisy data, noise-tolerant objectives were used along with Dropout tech-

nique. The conducted experiments w.r.t f1-macro score revealed that architecture 

consisting of Attention mechanism, two LSTMs, pretrained Word2Vec embeddings 

and Huber-loss achieves the best result along all the domains. The final model 

achieves averaged f1-macro of 0.719 for task of sentiment analysis and 0.5526 for 

task of rating estimation. 
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During explainability and key-phrases retrieval stage, the experiments in-

cluded comparison of Attention and LIME techniques. In order to retrieve key-

phrases in the form of n-grams, specific aggregation algorithm was developed. 

Based on human evaluation it was revealed that Attention on average achieves better 

results, while LIME provides better coverage of phrases. Further experiments re-

vealed that for applying method to standalone reviews, the need of thorough hyper-

parameters selection w.r.t aggregation algorithm arises. Final experiment, showed 

that approach is applicable to other domains without a need for finetuning to new 

data. The comparison with most similar analog proved that constructed algorithm is 

more memory efficient and is more capable of adaptation to unseen data and new 

domains, which fully satisfies the purpose of work. 

Despite of the fact that current approach provides a possibility of key-phrases 

retrieval for cross-domain reviews, there are still points to improve including exten-

sion to new domains, data quality, model’s tolerance to sarcasm and noise, multi n-

gram retrieval process. In the further work, the plans are to enhance current solution 

in terms of key-phrases retrieval by applying both modeling and algorithmic tech-

niques and adopt it to unsupervised aspect-based sentiment analysis and compare it 

to other methods in the field. Even though the experiments with key-phrases retrieval 

algorithm were conducted in Ukrainian language, it can easily be adopted to any 

other. All the models, code and data are open-sourced for further analysis and en-

hancements of Ukrainian NLP. 
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Appendix A (required) 

Technical Task 
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1. Назва та галузь застосування 

Розробка системи визначення ключових фраз у відгуках українською мовою 

за допомогою штучного інтелекту. Галузь застосування: сфера моніторингу й 

аналітики ЗМІ, сфера торгівлі й надання послуг. 

 

2. Підстава для розробки 

Підставою для виконання роботи є наказ №247 по ВНТУ від «18» __09___ 

2023р., та індивідуальне завдання на МКР, затверджене протоколом №1 

засідання кафедри АІІТ від «30» ____08____ 2023р. 

 

3. Мета та призначення розробки 

Метою роботи є розробка системи для визначення ключових фраз у 

відгуках українською. 

 

4. Джерела розробки 

1. Haykin, S. S. (2009). Neural networks and learning machines. Upper Saddle 

River, NJ: Pearson Education. 

2. Grus, J. (2015). Data Science from Scratch: First Principles with Python. Beijing: 

O'Reilly. ISBN: 978-1-4919-0142-7 

3. Ryan Mitchell. 2015. Web Scraping with Python: Collecting Data from the 

Modern Web (1st. ed.). O'Reilly Media, Inc. 

 

5. Показники призначення 

Основні технічні вимоги та мінімальні системні вимоги до програми: ОС: 

Windows XP/Ubuntu, процесор: Core 2 Duo, оперативна пам’ять: 4 GB ОП, 

відеокарта: Intel HD Graphics 4000, місце на диску: 2 GB доступного місця. 

Методи дослідження: 

В роботі використовуються методи аналізу, моделювання, класифікації, спо-

стереження, прогнозування, експерименту та прагматичної моделі наукового 

дослідження. 
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Результати роботи програми: визначення оцінки відгуку;визначення 

тональності відгуку; визначення релевантних фраз відносно передбаченої 

оцінки відгуку;  

 

6. Економічні показники 

До економічних показників входять: 

− витрати на розробку – не більше 150 тис. грн; 

− абсолютний ефект від впровадження розробки – не менше 4 млн. грн; 

− внутрішня дохідність інвестицій – не менше 42%; 

− термін окупності – не більше 3 років. 

 

7. Стадії розробки 

a) Аналіз предметної області  20.09 –02.10 

б) Вибір інструментів розробки, мови програмування й бібліотек 02.10 – 10.10 

в) Збір даних й їх обробка  11.10 –23.10 

г) Тренування моделей й створення системи для визначення ключових фраз 

23.10 – 08.11 

д) Економічна частина  08.11 – 11.11 

е) Оформлення матеріалів до захисту МКР  11.11 – 20.11 

 

 

8. Порядок контролю та приймання 

Рубіжний контроль провести до «01» грудня 2023 р. 

Попередній захист МКР провести до «21» грудня 2023 р. 

Захист МКР провести д о  « 18» грудня 2023 р. 

 

 

Розробив студент групи 1ІСТ-22м _________ Володимир КОВЕНКО 

 



114 

 

 

 

 

 

 

 

Appendix B (required) 

List of graphic materials 
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Figure B.1 - Schematic view of an algorithm for questions detection 
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Figure B.2 – Distribution of characters number in reviews 

 

 

 

Figure B.3 – Scheme showcasing automated data filtering approach 
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Figure B.4 – Scheme showcasing overall approach to key-phrases retrieval 
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Figure B.5 – Confusion matrix of best model on rating scores estimation 
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Figure B.6 – Key-phrases retrieval example for restaurant 
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Appendix C (required) 

Excerpt from the protocol of the competition commission 
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Appendix D (required) 

Conference participation certificate 
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Appendix E (required) 

Code for data collection and processing, model training and inference 

import bs4  

import pandas as pd  

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import requests 

from multiprocessing.pool import ThreadPool 

from tqdm import tqdm 

import time 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support.ui import Select 

from selenium.common.exceptions import ElementClickInterceptedException, 

StaleElementReferenceException 

import os 

from random_user_agent.user_agent import UserAgent 

from random_user_agent.params import SoftwareName, OperatingSystem 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.webdriver.support import expected_conditions as EC 

import json 

import pickle 

import urllib 

sns.set() 

 

from multiprocessing.pool import Pool 

from contextlib import closing 

 

def multiprocess_func(main_input, func, additional_inputs=None, 

                      gather_func=None, to_split=True, gather_func_args=None, 

                      chunk_size=100, n_processes=8): 

    if not gather_func_args: 

        gather_func_args = [] 

    if not additional_inputs: 

        additional_inputs = [] 

    if not gather_func: 

        gather_func = lambda x: [z for i in x for z in i] 

    if to_split: 

        splitted = [(main_input[i:i + chunk_size], *additional_inputs) if ad-

ditional_inputs else main_input[i:i + chunk_size]\ 

                    for i in range(0, len(main_input), chunk_size)] 

    else: 

        splitted = [(i, *additional_inputs) if additional_inputs else i for i 

in main_input] 

    with closing(Pool(n_processes)) as p: 

        result = list(tqdm(p.imap(func, splitted), 

                           total=len(splitted))) 

    return gather_func(result, *gather_func_args) 

 

""" 

# First level parsing 

""" 

 

software_names = [SoftwareName.CHROME.value] 

operating_systems = [OperatingSystem.LINUX.value, OperatingSystem.WIN-

DOWS.value, OperatingSystem.MACOS.value] 

user_agent_rotator = UserAgent(software_names=software_names, 

                              operating_systems=operating_systems, 

                              limit=100) 

main_link = 'https://www.tripadvisor.ru/Hotels-g294473-Ukraine-Ho-

tels.html#LEAF_GEO_LIST' 
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main_url = 'https://www.tripadvisor.ru/' 

 

def parse_sites(main_link, user_agent_rotator, max_ex=100): 

    first_button_xpath = '//*[@id="component_7"]/div/button' 

    next_page_xpath = '//*[@id="taplc_main_pagination_bar_ho-

tels_less_links_v2_0"]/div/div/div/span[2]' 

     

    user = user_agent_rotator.get_random_user_agent() 

    custom_options = webdriver.ChromeOptions() 

    custom_options.add_argument(f'user_agent={user}') 

     

    driver = webdriver.Chrome(options=custom_options) 

    driver.get(main_link) 

    WebDriverWait(driver, 90).until(EC.presence_of_element_located((By.XPATH, 

first_button_xpath))) 

    driver.find_element(by=By.XPATH, value=first_button_xpath).click() 

     

    pages = [driver.page_source] 

    ex_counter=0 

    while True: 

        try: 

            WebDriverWait(driver, 90).until(EC.presence_of_element_lo-

cated((By.XPATH, next_page_xpath))) 

            driver.find_element(by=By.XPATH, value=next_page_xpath).click() 

            ex_counter = 0 

        except Exception as ex: 

            if not isinstance(ex, (StaleElementReferenceException, Ele-

mentClickInterceptedException)): 

                print(ex) 

                break 

            else: 

                ex_counter+=1 

                 

            if ex_counter>=max_ex: 

                break 

        time.sleep(15) 

        pages.append(driver.page_source) 

    driver.quit() 

    return pages 

 

def parse_first_lvl(page): 

    soup = bs4.BeautifulSoup(page) 

    to_save = [] 

    for ui_column in soup.find_all('div', {'class':'ui_column is-8 main_col 

allowEllipsis'}): 

        try: 

            bubble_rating_parsed = ui_column.find('a', {'data-

clicksource':'BubbleRating'}) 

 

            to_save.append((bubble_rating_parsed.get('alt'), bubble_rat-

ing_parsed.get('href'), 

                        ui_column.find('div', {'class':'listing_ti-

tle'}).text)) 

        except: 

            pass 

    return to_save 

 

pages = parse_sites(main_link, user_agent_rotator) 

 

hotels_df = pd.DataFrame(multiprocess_func(pages, parse_first_lvl, 

                      gather_func=None, to_split=False, 

                      n_processes=8), columns=['rating', 'link', 'title']) 
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hotels_df = hotels_df.drop_duplicates() 

 

hotels_df['link'] = hotels_df['link'].apply(lambda x: url-

lib.parse.urljoin(main_url, x)) 

hotels_df['title'] = hotels_df['title'].apply(lambda x: 

'.'.join(x.split('.')[1:]).strip()) 

hotels_df['rating'] = hotels_df['rating'].apply(lambda x: 

float(x.split('of')[0].strip().replace(',','.'))) 

hotels_df['title'] = hotels_df['title'].apply(lambda x: x.replace('/','\\')) 

 

hotels_df['parsed'] = False 

 

hotels_df.to_csv('hotels_links.csv', index=False) 

 

 

import bs4  

import pandas as pd  

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import requests 

from multiprocessing.pool import ThreadPool 

from tqdm import tqdm 

import time 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support.ui import Select 

from selenium.common.exceptions import ElementClickInterceptedException, 

StaleElementReferenceException 

import os 

from random_user_agent.user_agent import UserAgent 

from random_user_agent.params import SoftwareName, OperatingSystem 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.webdriver.support import expected_conditions as EC 

import json 

import pickle 

import urllib 

from functools import partial 

from selenium.webdriver.common.action_chains import ActionChains 

from random_user_agent.user_agent import UserAgent 

from random_user_agent.params import OperatingSystem, SoftwareName 

import pyautogui 

import threading 

import multiprocessing 

from selenium.webdriver.common.proxy import Proxy, ProxyType 

sns.set() 

 

def augment_link(link, num): 

    before_link, after_link = link.split('Reviews') 

    return before_link+'Reviews-'+f'or{num*5}'+after_link 

 

import stem 

from multiprocessing.pool import Pool 

from contextlib import closing 

 

def multiprocess_func(main_input, func, additional_inputs=None, 

                      gather_func=None, to_split=True, gather_func_args=None, 

                      chunk_size=100, n_processes=8): 

    if not gather_func_args: 

        gather_func_args = [] 

    if not additional_inputs: 

        additional_inputs = [] 

    if not gather_func: 
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        gather_func = lambda x: [z for i in x for z in i] 

    if to_split: 

        splitted = [(main_input[i:i + chunk_size], *additional_inputs) if ad-

ditional_inputs else main_input[i:i + chunk_size]\ 

                    for i in range(0, len(main_input), chunk_size)] 

    else: 

        splitted = [(i, *additional_inputs) if additional_inputs else i for i 

in main_input] 

    with closing(Pool(n_processes)) as p: 

        result = list(tqdm(p.imap(func, splitted), 

                           total=len(splitted))) 

    return gather_func(result, *gather_func_args) 

 

""" 

# Second level parsing with translate + selenium 

""" 

 

hotels_df = pd.read_csv('hotels_links.csv') 

 

software_names = [SoftwareName.CHROME.value] 

operating_systems = [OperatingSystem.LINUX, OperatingSystem.MACOS.value, 

                    OperatingSystem.WINDOWS] 

 

user_agent_rotator = UserAgent(software_names=software_names, 

                               operating_systems=operating_systems, limit=ho-

tels_df.shape[0]*2) 

 

 

def save_html(file, path): 

    with open(path+'.html', 'w') as f: 

        f.write(file) 

 

def get_driver(user_agent, run_headless=False): 

    custom_options = webdriver.ChromeOptions() 

    prox = "socks5://localhost:9050" 

    custom_options.add_argument('--proxy-server=%s' % prox) 

     

    if run_headless: 

        custom_options.add_argument('headless') 

    custom_options.add_argument("lang=uk") 

    custom_options.add_argument('--ignore-certificate-errors') 

    custom_options.add_argument('--disable-dev-shm-usage') 

    custom_options.add_argument(f'user-agent={user_agent}') 

    driver = webdriver.Chrome(options=custom_options) 

    return driver 

 

def check_ip_proxy(address): 

    options = webdriver.ChromeOptions() 

    options.add_argument('--ignore-certificate-errors') 

    options.add_argument('headless') 

 

    prox = "socks5://localhost:9050" 

    options.add_argument('--proxy-server=%s' % prox) 

     

    driver = webdriver.Chrome(options=options) 

    driver.get('https://api.ipify.org/') 

    ip_address = driver.find_element(By.TAG_NAME, "body").text 

    driver.quit() 

     

    return ip_address 

 

def check_change_ip(address, default_ip_address, debug=False): 

    try: 

        ip_address = check_ip_proxy(address) 
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    except: 

        ip_address = None 

     

    if debug: 

        print(f'Old ip: {default_ip_address}, new ip : {ip_address}') 

         

    if default_ip_address!=ip_address and ip_address: 

        if debug: 

            print('IPs are different') 

        return True 

    return False 

 

def access_denied_check_with_address(address, url): 

    options = webdriver.ChromeOptions() 

    options.add_argument('--ignore-certificate-errors') 

    options.add_argument('headless') 

    prox = "socks5://localhost:9050" 

    options.add_argument('--proxy-server=%s' % prox) 

    driver = webdriver.Chrome(options=options) 

     

    try: 

        driver.get(url) 

    except: 

        driver.quit() 

        return False 

     

    html = driver.page_source 

    driver.quit() 

    try: 

        return bs4.BeautifulSoup(html).find('head').title.text!='Access De-

nied' 

    except: 

        return True 

 

def access_denied_check_with_page(html): 

    try: 

        return bs4.BeautifulSoup(html).find('head').title.text!='Access De-

nied' 

    except: 

        return True 

 

def parse_free_proxies(): 

    ips = [] 

    url = 'https://free-proxy-list.net/' 

    soup = bs4.BeautifulSoup(requests.get(url).text) 

    for i in soup.find('table', {'class':'table table-striped table-bor-

dered'}).find_all('tr'): 

        found = i.find_all('td')[:2] 

        if found: 

            ip, port = found 

            ips.append(ip.text+':'+port.text) 

    return ips 

 

def wait_and_click_by(driver, value, by, time_sleep=15): 

    WebDriverWait(driver, time_sleep).until(EC.presence_of_element_lo-

cated((by, value))) 

    driver.find_element(by=by, value=value).click() 

 

""" 

## chek proxy 

""" 

 

from collections import Counter 

from stem import Signal 
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from stem.control import Controller 

 

default_ip = check_ip_proxy('') 

 

 

""" 

## parsing itself 

""" 

 

import os 

import queue 

 

ABS_PATH = 'trip_advisor_data_hotels' 

if not os.path.exists(ABS_PATH): 

    os.mkdir(ABS_PATH) 

     

for i in hotels_df['title']: 

    dir_path = os.path.join(ABS_PATH,i) 

 

    if not os.path.exists(dir_path): 

        os.mkdir(dir_path) 

 

 

def parse_reviews(link, path, abs_path, user_agent, 

                  parts_scroll=8, sleep_time_list=None, run_headless=True, 

                 max_errors=50): 

     

     

    # exception handling  

    passed = {'got_initial_link': False, 

              'see_all_languages': False} 

    passed['link'] = link 

    passed['hotel_name'] = path 

     

    caught_ex = None 

         

    # overall path 

    path_to_save = os.path.join(abs_path, path) 

     

    #check if there are already parsed pages 

    n_already_parsed = len(os.listdir(path_to_save)) 

    if n_already_parsed: 

        link = augment_link(link, n_already_parsed) 

     

     

    # get driver 

    try: 

        driver = get_driver(user_agent, run_headless) 

    except Exception as ex: 

        caught_ex = ex 

     

    if caught_ex: 

        passed['got_initial_link'] = False 

        passed['num_overall'] = 9999 

        passed['num_parsed'] = 0 

        passed['exception'] = caught_ex 

        return passed 

 

 

    # initial link getting 

    try: 

        driver.get(link) 

        time.sleep(5) 

    except Exception as ex: 
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        caught_ex = ex 

         

 

    if caught_ex: 

        passed['got_initial_link'] = False 

        passed['num_overall'] = 9999 

        passed['num_parsed'] = 0 

        passed['exception'] = caught_ex 

        return passed 

    else: 

        passed['got_initial_link'] = True 

 

    # check if access denied 

    if not access_denied_check_with_page(driver.page_source): 

        caught_ex = 'Access dnied' 

         

    if caught_ex: 

        passed['got_initial_link'] = False 

        passed['num_overall'] = 9999 

        passed['num_parsed'] = 0 

        passed['exception'] = caught_ex 

        return passed 

     

    # see all languages 

    try: 

        wait_and_click_by(driver, 'Qukvo', By.CLASS_NAME, 30) 

        passed['see_all_languages'] = True 

        time.sleep(5) 

    except: 

        passed['see_all_languages'] = False 

     

 

    c = 0 

    errors = 0 

    first_page = None 

 

    while True: 

        passed['show_more'] = False 

        passed['saved_file'] = False 

        passed['next_page'] = False 

 

 

        try: 

            # show more  

            wait_and_click_by(driver, 'Ignyf', By.CLASS_NAME, 30) 

            time.sleep(2) 

            passed['show_more'] = True 

            # if first page, then save it 

            if c == 0: 

                first_page = driver.page_source 

 

            # save to txt 

            save_html(driver.page_source, os.path.join(path_to_save, 

f'page_{str(n_already_parsed+c)}')) 

            time.sleep(1) 

            passed['saved_file'] = True             

            c += 1 

             

            # next page 

            WebDriverWait(driver, 30).until(EC.presence_of_element_lo-

cated((By.CLASS_NAME, 'ui_button.nav.next'))) 

            button_el = driver.find_element(by=By.CLASS_NAME, value='ui_but-

ton.nav.next') 

            if button_el.is_enabled() and button_el.is_displayed(): 
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                button_el.click() 

            else: 

                break 

            passed['next_page'] = True    

            errors = 0 

             

        except Exception as ex: 

            if not isinstance(ex, (StaleElementReferenceException, Ele-

mentClickInterceptedException)): 

                caught_ex = ex 

                break 

            else: 

                errors+=1 

            if errors>=max_errors: 

                break   

                 

        finally: 

            time.sleep(np.random.choice(sleep_time_list)) 

 

             

    driver.quit() 

     

    if not caught_ex: 

        passed = dict([(k, True) for k in passed.keys()]) 

 

    try: 

        passed['num_overall'] = int(bs4.BeautifulSoup(first_page) \ 

                                    .find_all('span', {'data-test-target': 

'CC_TAB_Reviews_LABEL'})[0] \ 

                                    .find('span', {'class': 'iypZC Mc _R 

b'}).text) 

        passed['got_overall_num'] = True 

    except: 

        passed['got_overall_num'] = False 

        passed['num_overall'] = 0 

 

    passed['num_parsed'] = 5 * (n_already_parsed+c) 

    passed['exception'] = caught_ex 

 

    return passed 

 

n_threads = 8 

headless = True 

sleep_time_list = list(range(3,15)) 

 

parse_reviews_partial = partial(parse_reviews, 

                                run_headless=headless, 

                                sleep_time_list=sleep_time_list, 

                               abs_path=ABS_PATH) 

 

 

user_agents = [user_agent_rotator.get_random_user_agent() for i in range(ho-

tels_df.shape[0])] 

 

 

sub_df = hotels_df[hotels_df['parsed']==False] 

input_tuples = list(zip(sub_df['link'].values.tolist(), sub_df['title'].val-

ues.tolist(), user_agents)) 

 

batch_size = 100 

sleep_between_batches_time = [120, 180, 300, 600] 

 

batched_input_tuples = [input_tuples[i:i+batch_size] for i in range(0, 

len(input_tuples)+batch_size, batch_size)] 
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def parse_reviews_multiprocessing(input_tuple): 

    link, path, user_agent = input_tuple 

    passed_dict = parse_reviews_partial(link, path=path, 

user_agent=user_agent) 

    return passed_dict 

 

for batch in batched_input_tuples: 

    with closing(ThreadPool(n_threads)) as p: 

        results = list(tqdm(p.imap(parse_reviews_multiprocessing, batch), to-

tal=len(batch))) 

 

    mask_passed = dict([(i['link'], i['num_parsed']/(i['num_overall']+1)>0.8) 

for i in results]) 

    hotels_df.loc[hotels_df['parsed']==False,'parsed'] = hotels_df.loc[ho-

tels_df['parsed']==False,'link']\ 

    .apply(lambda x: mask_passed.get(x, False)) 

    time.sleep(np.random.choice(sleep_between_batches_time)) 

 

hotels_df['parsed'].value_counts() 

 

hotels_df.to_csv('hotels_links.csv', index=False) 

 

 

 

import bs4  

import pandas as pd  

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

import requests 

from multiprocessing.pool import ThreadPool 

from tqdm import tqdm 

import time 

from selenium import webdriver 

from selenium.webdriver.common.by import By 

from selenium.webdriver.support.ui import Select 

from selenium.common.exceptions import ElementClickInterceptedException, 

StaleElementReferenceException 

import os 

from random_user_agent.user_agent import UserAgent 

from random_user_agent.params import SoftwareName, OperatingSystem 

from selenium.webdriver.support.ui import WebDriverWait 

from selenium.webdriver.support import expected_conditions as EC 

import json 

import pickle 

import urllib 

sns.set() 

 

from multiprocessing.pool import Pool 

from contextlib import closing 

 

from functools import partial 

 

def multiprocess_func(main_input, func, additional_inputs=None, 

                      gather_func=None, to_split=True, gather_func_args=None, 

                      chunk_size=100, n_processes=8): 

    if not gather_func_args: 

        gather_func_args = [] 

    if not additional_inputs: 
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        additional_inputs = [] 

    if not gather_func: 

        gather_func = lambda x: [z for i in x for z in i] 

    if to_split: 

        splitted = [(main_input[i:i + chunk_size], *additional_inputs) if ad-

ditional_inputs else main_input[i:i + chunk_size]\ 

                    for i in range(0, len(main_input), chunk_size)] 

    else: 

        splitted = [(i, *additional_inputs) if additional_inputs else i for i 

in main_input] 

    with closing(Pool(n_processes)) as p: 

        result = list(tqdm(p.imap(func, splitted), 

                           total=len(splitted))) 

    return gather_func(result, *gather_func_args) 

 

def process_buble(x): 

    return float('.'.join(x)) 

 

def bs4_parse_reviews(input_tuple): 

    page_to_parse, hotel_name = input_tuple 

    records = [] 

    try: 

        for review_page in bs4.BeautifulSoup(page_to_parse).find_all('div', 

{'class':'WAllg _T'}): 

 

            record = {} 

            record['overall_rating'] = process_buble(re-

view_page.find('div',{'data-test-target':'review-rating'})\ 

                                           .span['class'][-1].split('_')[-1]) 

            per_type_bubble = review_page.find_all('div', {'class':'hemdC S2 

H2 WWOoy'}) 

 

            if per_type_bubble: 

                for j in per_type_bubble: 

                    record[j.text+'_rating'] = process_bu-

ble(j.span.span['class'][-1].split('_')[-1]) 

 

 

            record['review'] = review_page.find('div',{'class':'fIrGe 

_T'}).text 

            record['hotel_name'] = hotel_name 

             

            records.append(record) 

    except Exception as ex: 

        print(ex) 

         

    return records 

 

def read_file(path): 

    with open(path, 'r') as f: 

        return f.read() 

 

def parse_reviews_multiproc(name, abs_path): 

    path = os.path.join(abs_path,name) 

    records = [] 

    for path_page in os.listdir(path): 

        page = read_file(os.path.join(path,path_page)) 

        records.extend(bs4_parse_reviews((page, name))) 

    return records 

 

ABS_PATH = 'trip_advisor_data_hotels' 

 

 

hotels_df = pd.read_csv('hotels_links.csv') 
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hotels_to_load = hotels_df[hotels_df['parsed']==True]['title'].val-

ues.tolist() 

 

partial_parse_reviews_multiproc = partial(parse_reviews_multiproc, 

abs_path=ABS_PATH) 

 

 

reviews = multiprocess_func([i for i in os.listdir(ABS_PATH) if not i.starts-

with('.')], 

                  func=partial_parse_reviews_multiproc, 

                  to_split=False, 

                 n_processes=8) 

 

reviews = pd.DataFrame(reviews) 

 

reviews = reviews.drop_duplicates(['review', 'hotel_name']) 

 

reviews.head() 

 

reviews.shape 

 

reviews['overall_rating'].value_counts().plot.bar() 

 

reviews['overall_rating'].value_counts() 

 

reviews.isna().sum() 

 

reviews[reviews['overall_rating']==3.0].sample()['review'].values[0] 

reviews.to_csv('hotel_reviews.csv', index=False) 

 

import os 

import pandas as pd 

import gc 

from multiprocessing.pool import Pool 

from contextlib import closing 

from tqdm import tqdm 

 

 

def multiprocess_func(main_input, func, additional_inputs=None, 

                      gather_func=None, to_split=True, gather_func_args=None, 

                      chunk_size=100, n_processes=8): 

    if not gather_func_args: 

        gather_func_args = [] 

    if not additional_inputs: 

        additional_inputs = [] 

    if not gather_func: 

        gather_func = lambda x: [z for i in x for z in i] 

    if to_split: 

        splitted = [(main_input[i:i + chunk_size], *additional_inputs) if ad-

ditional_inputs else main_input[i:i + chunk_size]\ 

                    for i in range(0, len(main_input), chunk_size)] 

    else: 

        splitted = [(i, *additional_inputs) if additional_inputs else i for i 

in main_input] 

    with closing(Pool(n_processes)) as p: 

        result = list(tqdm(p.imap(func, splitted), 

                           total=len(splitted))) 

    return gather_func(result, *gather_func_args) 

 

 

path = '../../../data_reviews/' 
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""" 

# Merging the data 

""" 

 

df1 = pd.read_csv(os.path.join(path, 'rozetka_ukr.csv'), encoding='windows-

1251',  

           sep=';') 

df1.shape 

 

df1['entity_name'] = df1['prod_link'].apply(lambda x: x.split('/')[-3]) 

 

df1 = df1[['comment','translate', 'rating', 'entity_name']]\ 

.rename(columns={'comment':'review', 'translate':'review_translate'}) 

df1['dataset_name'] = 'rozetka' 

 

df2 = pd.read_csv(os.path.join(path, 'rozetka_ru.csv'), encoding='windows-

1251',  

           sep=';') 

df2.shape 

 

df2 = df2[~df2['prod_link'].isna()] 

 

df2['entity_name'] = df2['prod_link'].apply(lambda x: x.split('/')[-3]) 

 

df2 = df2[['comment','translate', 'rating', 'entity_name']]\ 

.rename(columns={'comment':'review', 'translate':'review_translate'}) 

df2['dataset_name'] = 'rozetka' 

 

df3 = pd.read_csv(os.path.join(path, 'hotels_final.csv'), encoding='windows-

1251',  

           sep=';') 

df3.shape 

 

df3 = df3.rename(columns={'hotel_name':'entity_name'}) 

 

df3 = df3[['review', 'translate', 'overall_rating', 'entity_name']]\ 

.rename(columns={'overall_rating' : 'rating', 'translate':'review_trans-

late'}) 

df3['dataset_name'] = 'tripadvisor_hotels_ukraine' 

 

df4 = pd.read_csv(os.path.join(path, 'restaurants_review_final.csv'), encod-

ing='windows-1251',  

           sep=';') 

df4.shape 

 

df4 = df4.rename(columns={'name':'entity_name'}) 

 

df4 = df4.rename(columns={'overall_rating' : 'rating'})[['review', 'ti-

tle_translate', 'review_translate', 'rating', 

                                                        'entity_name']] 

df4['dataset_name'] = 'tripadvisor_restaurants_ukraine' 

 

df = pd.concat([df1, df2, df3, df4], axis=0) 

 

df.head() 

 

del df1, df2, df3, df4; 

gc.collect(); 

 

df = df[~df['rating'].isna()] 

 

df['title_translate'] = df['title_translate'].fillna('') 

 

df = df[~df['review'].isna()] 
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df['translated'] = df['review']!=df['review_translate'] 

 

df.isna().sum() 

 

df['translated'].value_counts() 

 

df.shape 

 

df[df['rating']==2].sample(1)[['review', 'review_translate']].values 

 

df['entity_name'].nunique() 

 

""" 

# Basic data analysis 

""" 

 

import nltk 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

sns.set() 

 

from nltk.tokenize import sent_tokenize 

 

""" 

## Characters number  

""" 

 

print('Max number of characters in translated review : {}'.format(df['re-

view_translate'].apply(len).max())) 

print('Min number of characters in translated review : {}'.format(df['re-

view_translate'].apply(len).min())) 

print('Mean number of characters in translated review : {}'.format(df['re-

view_translate'].apply(len).mean())) 

print('Median number of characters in translated review : {}'.format(df['re-

view_translate'].apply(len).median())) 

 

 

sns.distplot(np.log10(df['review_translate'].apply(len))) 

 

np.percentile(df['review_translate'].apply(len), q=0.2) 

 

""" 

### filter out those reviews which char len is an outlier 

""" 

 

df = df[df['review_translate'].apply(len)>np.percentile(df['review_trans-

late'].apply(len), q=0.2)] 

 

""" 

### find those reviews which have a lot less characters that real text 

""" 

df['diff_len'] = df['review'].apply(len)-df['review_translate'].apply(len) 

df = df[df['review_translate']!='#ERROR!'] 

df['diff_len'] = df['diff_len'].apply(abs) 

sns.distplot(np.log1p(df['diff_len'])) 

df = df[df['diff_len']<200] 

df[df['translated']==True]['diff_len'].max() 

 

df = df.drop(columns=['diff_len']) 

 

""" 
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### deleting empty symbols 

""" 

 

df['review_translate'] = df['review_translate'].str.strip() 

df = df[df['review_translate'].apply(lambda x: True if x else False)] 

 

""" 

### remove \n char 

""" 

 

df['translated'].value_counts() 

 

import re 

def remove_multy_spaces(text): 

    try: 

        text = re.sub(r'\s+', ' ', text) 

        return text 

    except Exception as ex: 

        return None 

 

df['review_translate'] = df['review_translate'].str.replace('\n', 

'').str.strip() 

 

def spacing_between_chars_text(text): 

    text = list(text) 

    new_text = [] 

    for idx_char in range(len(text)): 

        if not text[idx_char].isalnum() and text[idx_char]!="'" and 

text[idx_char]!=' ': 

            new_text.append(' ') 

            new_text.append(text[idx_char]) 

            new_text.append(' ') 

        else: 

            new_text.append(text[idx_char]) 

 

    return ''.join(new_text).strip() 

 

df['review_translate'] = multiprocess_func(df['review_translate'].values,  

                  func=spacing_between_chars_text, 

                  gather_func=lambda x: x, 

                  to_split=False) 

 

df['review_translate'] = multiprocess_func(df['review_translate'].values,  

                  func=remove_multy_spaces, 

                  gather_func=lambda x: x, 

                  to_split=False) 

 

df['review_translate'].values[0] 

 

""" 

## Sentence number 

""" 

 

sent_tokenized = multiprocess_func(df['review_translate'].values,  

                  func=sent_tokenize, 

                  gather_func=lambda x: x, 

                  to_split=False) 

 

sns.distplot(np.log10([len(i) for i in sent_tokenized])) 

 

df['review_translate_sentences'] = sent_tokenized 

 

""" 

# Delete those which are partially translated 
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""" 

 

import fasttext 

from itertools import chain 

 

model = fasttext.load_model('../../../lid.176.bin') 

 

def detect_lang_sentences(batched_texts, model): 

    result = [] 

    for texts in tqdm(batched_texts): 

        lengths = [len(i) for i in texts] 

        sentences = list(chain(*texts)) 

        predicted_langs, _ = model.predict(sentences) 

        predicted_langs = list(map(lambda x: x[0].split('__')[-1], pre-

dicted_langs)) 

        assert sum(lengths)==len(sentences) 

        assert len(predicted_langs)==len(sentences) 

        batched_langs = [] 

        start = 0 

        end = lengths[0] 

        for i in lengths[1:]: 

            to_add = predicted_langs[start:end] 

            if not to_add: 

                break 

            batched_langs.append(to_add) 

            start = end 

            end = end+i 

             

        if predicted_langs[start:end]: 

                batched_langs.append(predicted_langs[start:end]) 

        assert [len(i) for i in batched_langs]==lengths 

        result.extend(batched_langs) 

 

    return result 

 

def detect_lang(batched_texts, model): 

    result = [] 

    for texts in tqdm(batched_texts): 

        predicted_langs, _ = model.predict(list(texts)) 

        result.extend(list(map(lambda x: x[0].split('__')[-1], pre-

dicted_langs))) 

 

    return result 

 

batch_size=100 

to_detect_lang = df.loc[df['translated']==True, 'review_translate_sentenc-

es'].values 

batches = [to_detect_lang[i:i+batch_size] for i in range(0, len(to_de-

tect_lang), batch_size)] 

 

sum([len(i) for i in batches]) 

 

result = detect_lang_sentences(batches, model) 

 

batch_size=100 

to_detect_lang = df.loc[df['translated']==True, 'review_translate'].values 

batches = [to_detect_lang[i:i+batch_size] for i in range(0, len(to_de-

tect_lang), batch_size)] 

 

result = detect_lang(batches, model) 

 

df['language_translated'] = 'uk' 

df.loc[df['translated']==True, 'language_translated'] = result 
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df = df[df['language_translated']=='uk'] 

 

df.drop(columns='language_translated', inplace=True) 

 

""" 

# Tokenize texts 

""" 

 

from nltk.tokenize import regexp_tokenize 

 

def NLTK_special_chars_excluded_tokenizer(input_text): 

    overall_pattern = r"[\w'-]+|[^\w\s'-]+" 

    return regexp_tokenize(input_text, pattern=overall_pattern, gaps=False, 

discard_empty=True) 

 

def tokenize_sentence_tokens(sentences): 

    tokens = [] 

    for sent in sentences: 

        tokens.append(NLTK_special_chars_excluded_tokenizer(sent)) 

    return tokens 

 

df['review_translate_sentences_tokens'] = multiprocess_func(df['review_trans-

late_sentences'].values,  

                  func=tokenize_sentence_tokens, 

                  gather_func=lambda x: x, 

                  to_split=False) 

 

""" 

# Add spaces between chars  

""" 

 

# %% 

from functools import partial 

 

# %% 

def apply_func_sent(sentences, func): 

    result = [] 

    for sent in sentences: 

        result.append(func(sent)) 

    return result 

 

# %% 

def spacing_between_chars_tokens(tokens): 

    tokens = list(np.hstack([spacing_between_chars(i) for i in tokens])) 

    return [i for i in tokens if i] 

 

# %% 

def spacing_between_chars(text): 

    text = list(text) 

    new_text = [] 

    for idx_char in range(len(text)): 

        if not text[idx_char].isalnum() and text[idx_char]!="'": 

            new_text.append(' ') 

            new_text.append(text[idx_char]) 

            new_text.append(' ') 

        else: 

            new_text.append(text[idx_char]) 

 

    return ''.join(new_text).strip().split(' ') 

 

# %% 

spacing_between_chars_sentences = partial(apply_func_sent, func=spacing_be-

tween_chars_tokens) 
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# %% 

df['review_translate_sentences_tokens'] = multiprocess_func(df['review_trans-

late_sentences_tokens'].values,  

                  func=spacing_between_chars_sentences, 

                  gather_func=lambda x: x, 

                  to_split=False) 

 

# %% 

""" 

# Find pos tags 

""" 

 

# %% 

import pymorphy2 

 

# %% 

morph = pymorphy2.MorphAnalyzer(lang='uk') 

 

# %% 

def pos_tagging(ent): 

    batch, morph = ent 

    tags_batch = [] 

    for sentences in batch: 

        tags_sentences = [] 

        for sentence in sentences: 

            tags_sentences.append([morph.parse(word)[0].tag._POS for word in 

sentence]) 

        tags_batch.append(tags_sentences) 

    return tags_batch 

 

# %% 

df['review_translate_sentences_pos'] = multiprocess_func(df['review_trans-

late_sentences_tokens'].values,  

                  func=pos_tagging, 

                  gather_func=None, 

                  to_split=True, 

                  chunk_size=100, 

                  n_processes=12, 

                  additional_inputs=[morph]) 

 

# %% 

""" 

# Find lemmas 

""" 

 

# %% 

def lemmatizing(ent): 

    batch, morph = ent 

    tags_batch = [] 

    for sentences in batch: 

        tags_sentences = [] 

        for sentence in sentences: 

            tags_sentences.append([morph.parse(word)[0].normal_form for word 

in sentence]) 

        tags_batch.append(tags_sentences) 

    return tags_batch 

 

# %% 

df['review_translate_sentences_lemma'] = multiprocess_func(df['review_trans-

late_sentences_tokens'].values,  

                  func=lemmatizing, 

                  gather_func=None, 

                  to_split=True, 

                  chunk_size=100, 
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                  n_processes=12, 

                  additional_inputs=[morph]) 

 

# %% 

df.head(1) 

 

# %% 

""" 

# Delete plain questions 

""" 

 

# %% 

def is_question_sentences(ent): 

    sentences, tags = ent 

    is_question_vector = [] 

    for i in range(len(sentences)): 

        is_question_vector.append(is_question(sentences[i], tags[i])) 

    return is_question_vector 

 

# %% 

def is_question(words, tags): 

    tags = [tag for word, tag in list(zip(words, tags))\ 

            if not word in ['.', ',', '!', '?']] 

     

    # Check if the last character of the sentence is a question mark 

    if words[-1] == "?" and len(tags)>1: 

        # Check if the sentence ends with a verb or an auxiliary verb 

        if tags[-1] in ["VERB", "INFN"] or (tags[-1] == "GRND" and tags[-2] 

in ["VERB", "INFN"]): 

            return True 

        # Check if the sentence starts with an auxiliary verb and ends with a 

verb 

        elif tags[0] == "PRCL" and tags[-1] in ["VERB", "INFN"]: 

            return True 

        else: 

            return False 

    elif words[-1]=='?' and len(tags)==1: 

        return True 

    else: 

        return False 

 

 

# %% 

to_input = list(zip(df['review_translate_sentences_tokens'].values.tolist(),  

            df['review_translate_sentences_pos'].values.tolist())) 

 

# %% 

questions_mask = multiprocess_func(to_input,  

                  func=is_question_sentences, 

                  gather_func=lambda x: x, 

                  to_split=False, 

                  n_processes=12, 

                  ) 

 

# %% 

df['is_question'] = questions_mask 

 

# %% 

df = df[~df['is_question'].apply(lambda x: all(x))] 

 

# %% 

df.to_csv('processed_data.csv', index=False) 
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# %% 

!pip install tokenizers 

import tensorflow as tf 

from tokenizers import Tokenizer, models, pre_tokenizers, trainers, Regex 

import tokenizers 

import pandas as pd 

 

# %% 

model_name = 'deep_lstm_attention_w2v_huber' 

 

# %% 

""" 

# Load data 

""" 

 

# %% 

df = pd.read_csv('/home/user/files_for_research_Vova/processed_data.csv',\ 

                 usecols=['review_translate', 

                                                            'dataset_name', 

                                                            'rating', 

                                                           'translated']) 

 

# %% 

df.head() 

 

# %% 

subsets = pd.read_csv('/home/user/files_for_research_Vova/train_val_test_in-

dices.csv') 

 

# %% 

subsets.head() 

 

# %% 

subsets = subsets.merge(df[['dataset_name', 'translated']], left_on='index', 

right_index=True) 

 

# %% 

""" 

# Filter data 

""" 

 

# %% 

bad_indices = pd.read_csv('/home/user/files_for_re-

search_Vova/files_to_check.csv') 

 

# %% 

subsets = subsets[~subsets.index.isin(bad_indices['id'].values)] 

 

# %% 

df = df[~df.index.isin(bad_indices['id'].values)] 

 

# %% 

df, subsets = df.reset_index().drop(columns='index'), subsets.reset_in-

dex().drop(columns='index') 

 

# %% 

""" 

# Load tokenizer 

""" 

 

# %% 
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tokenizer = Tokenizer(models.BPE.from_file(vocab='/home/user/files_for_re-

search_Vova/tokenizer_30k.json', 

            merges='/home/user/files_for_research_Vova/merges_tokenizer.txt', 

                                          end_of_word_suffix='</w>')) 

tokenizer.pre_tokenizer = pre_tokenizers.Split(Regex(r"[\w'-]+|[^\w\s'-

]+"),'removed', True) 

 

# %% 

""" 

# Encode text 

""" 

 

# %% 

import seaborn as sns 

import numpy as np 

 

# %% 

sns.set() 

 

# %% 

df['review_translate'] = df['review_translate'].str.lower() 

 

# %% 

df['encoded'] = tokenizer.encode_batch(df['review_translate'].values) 

 

# %% 

df['encoded'] = df['encoded'].apply(lambda x: x.ids) 

 

# %% 

sns.distplot(np.log10(df['encoded'].apply(len))) 

 

# %% 

np.percentile(df['encoded'].apply(len), 99) 

 

# %% 

encoded_tokens = df['encoded'].values 

 

# %% 

from itertools import chain 

 

# %% 

padded_tokens = tf.keras.preprocessing.sequence\ 

.pad_sequences(encoded_tokens, maxlen=300, padding="post") 

 

 

# %% 

padded_tokens.shape 

 

# %% 

""" 

# Get embeddings 

""" 

 

# %% 

!pip install gensim 

 

# %% 

import gensim 

 

# %% 

def load_w2vec(path, vocab, embed_dim=300, glove_backup={}): 

    vectors = gensim.models.KeyedVectors.load_word2vec_format(path, bi-

nary=True) 

    emb_matrix = np.zeros(shape = (len(vocab) + 1, embed_dim)) 
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    missed = 0 

    for word, idx in vocab.items(): 

        if idx!=0: 

            try: 

                emb_matrix[idx,:] = vectors[word] 

            except KeyError: 

                if glove_backup: 

                    try: 

                        emb_matrix[idx,:] = glove_backup[word] 

                    except: 

                        missed+=1 

                else: 

                    missed+=1 

    print(f'Missed words : {missed}') 

    return emb_matrix, vectors 

 

# %% 

emb_matrix, vectors = load_w2vec('/home/user/files_for_research_Vova/embed-

dings_w2v.bin', 

                                tokenizer.get_vocab()) 

 

# %% 

""" 

# Get labels and split data 

""" 

 

# %% 

mapping = dict([(i,c) for c,i in enumerate(df['rating'].unique())]) 

 

# %% 

mapping 

 

# %% 

y = df['rating'].map(mapping).values 

 

# %% 

num_classes = len(set(y)) 

 

# %% 

train_indices, val_indices, test_indices = subsets[sub-

sets['split']=='train'].index.tolist(),\ 

subsets[subsets['split']=='val'].index.tolist(),\ 

subsets[subsets['split']=='test'].index.tolist() 

 

 

# %% 

train_y, val_y, test_y = y[train_indices], y[val_indices], y[test_indices] 

 

# %% 

train_x, val_x, test_x = padded_tokens[train_indices], padded_tokens[val_in-

dices],\ 

padded_tokens[test_indices] 

 

# %% 

train_x.shape 

 

# %% 

""" 

# Create  model 

""" 

 

# %% 

class Attention(tf.keras.layers.Layer): 

    def __init__(self,   
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                 units=128, **kwargs): 

        super(Attention,self).__init__(**kwargs) 

        self.units = units 

     

    def build(self, input_shape): 

        self.W1=self.add_weight(name='attention_weights_1', shape=(in-

put_shape[-1], self.units),  

                               initializer='glorot_uniform', trainable=True) 

         

        self.W2=self.add_weight(name='attention_weights_2', shape=(1, 

self.units),  

                               initializer='glorot_uniform', trainable=True)  

         

        super(Attention, self).build(input_shape) 

         

    def call(self, x): 

        x = tf.transpose(x, perm=[0, 2, 1]) 

        attention = tf.nn.softmax(tf.matmul(self.W2, tf.nn.tanh(tf.mat-

mul(self.W1, x)))) 

        weighted_context = tf.reduce_sum(x * attention, axis=-1) 

        return weighted_context, attention 

     

    def get_config(self): 

        config = super().get_config().copy() 

        config.update({ 

            'units': self.units 

        }) 

        return config 

 

 

# %% 

tf.keras.backend.clear_session() 

np.random.seed(0) 

tf.random.set_seed(0) 

# define layers 

attention = Attention(units=128, name='attention') 

input_layer = tf.keras.layers.Input(shape=(300,), name='input') 

word_embedding = tf.keras.layers.Embedding(input_dim=tokenizer.get_vo-

cab_size()+1, 

                                                   output_dim=300, 

                                                   trainable=True, 

                                           name='embedding', 

                                           mask_zero=True, 

                                                   weights=[emb_matrix]) 

batch_norm = tf.keras.layers.LayerNormalization(axis=-1) 

spatial_dropout = tf.keras.layers.SpatialDropout1D(0.3, name='spatial_drop-

out') 

lstm1 = tf.keras.layers.LSTM(256, name='lstm1', 

                            return_sequences=True) 

lstm2 = tf.keras.layers.LSTM(128, name='lstm2', 

                            return_sequences=True, return_state=True) 

dense1 = tf.keras.layers.Dense(128, activation='relu', name='dense') 

dropout = tf.keras.layers.Dropout(0.5, name='dropout') 

logits_layer = tf.keras.layers.Dense(num_classes, activation='softmax', 

name='output') 

 

#actual flow 

embedded = spatial_dropout(word_embedding(input_layer)) 

lstm_lvl1 = lstm1(embedded) 

normed = batch_norm(lstm_lvl1) 

context_vector, state_h, _ = lstm2(normed) 

weighted_context, attention_scores = attention(context_vector) 

final_attn_output = tf.concat([state_h, weighted_context], axis=1) 

x = dense1(final_attn_output) 
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x = dropout(x) 

x = logits_layer(x) 

model = tf.keras.Model(input_layer, x) 

 

# %% 

""" 

# Compile model 

""" 

 

# %% 

model.compile(loss=tf.keras.losses.Huber(1.0), \ 

              optimizer=tf.keras.optimizers.Adam(), 

             metrics=['acc']) 

 

# %% 

""" 

# Early stopping 

""" 

 

# %% 

import operator 

class EarlyStopping: 

    def __init__(self, tolerance=5, mode='min'): 

        assert mode in ['min','max'], 'Mode should be min or max' 

        self.mode = operator.lt if mode=='min' else operator.gt  

        self.tolerance = tolerance 

        self.counter = 0 

        self.early_stop = False 

        self.extremum_value = None 

        self.best_model = None 

     

    @staticmethod 

    def copy_model(model): 

        copied_model = tf.keras.models.clone_model(model) 

        copied_model.set_weights(model.get_weights()) 

        return copied_model 

         

    def __call__(self, val, model): 

        if self.extremum_value is None: 

            self.extremum_value = val 

            self.best_model = self.copy_model(model) 

        else: 

            if not self.mode(val, self.extremum_value): 

                self.counter+=1 

            else: 

                self.extremum_value = val 

                self.best_model = self.copy_model(model) 

                self.counter = 0 

         

        if self.counter==self.tolerance: 

            self.early_stop=True 

 

# %% 

""" 

# Train model 

""" 

 

# %% 

from sklearn.metrics import f1_score 

 

# %% 

def evaluate_on_datasets(y_true, y_pred, split='val'): 

    d = {} 

    for dataset_name in subsets['dataset_name'].unique(): 
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            idx = subsets[subsets['split']==split].copy() 

            idx['index'] = list(range(idx.shape[0])) 

            idx = idx[(idx['dataset_name']==dataset_name)]\ 

            ['index'].values.tolist() 

            score = f1_score(y_true=y_true[idx], y_pred=y_pred[idx], 

                                 average='macro') 

            print(f'{split} f1 score for dataset {dataset_name} : {score}') 

            d[f'{split}_f1_{dataset_name}'] = score 

             

    for flag in [True, False]: 

        idx = subsets[subsets['split']==split].copy() 

        idx['index'] = list(range(idx.shape[0])) 

        idx = idx[idx['translated']==flag]['index'].values.tolist() 

        score = f1_score(y_true=y_true[idx], y_pred=y_pred[idx], 

                                 average='macro') 

        print(f'{split} f1 score for translated=={flag} : {score}') 

        d[f'{split}_f1_translated=={flag}'] = score 

    return d 

 

# %% 

def update_history(history, d): 

    for key, value in d.items(): 

        res = history.get(key, []) 

        res.append(value) 

        history[key] = res 

 

# %% 

early_stopping = EarlyStopping(mode='max', tolerance=4) 

 

# %% 

def training_loop(model, train_x, train_y, val_x, val_y, epochs=10, 

batch_size=128, 

                 shuffle=True): 

    dict_history = {} 

    for i in range(epochs): 

        if shuffle and i==0: 

            indices = np.arange(len(train_x)) 

            np.random.shuffle(indices) 

            train_x = train_x[indices] 

            train_y = train_y[indices] 

             

        #train model 

        history = model.fit(train_x,tf.one_hot(train_y,num_classes), \ 

                            validation_data=(val_x,tf.one_hot(val_y,num_clas-

ses)),  

          epochs=1, batch_size=batch_size, 

                           verbose=0, shuffle=False) 

        train_loss, val_loss = history.history['loss'][-1], history.his-

tory['val_loss'][-1] 

         

        #evaluate model 

        train_prediction = np.argmax(model.predict(train_x, 

batch_size=batch_size), axis=-1) 

        val_prediction = np.argmax(model.predict(val_x, 

batch_size=batch_size), axis=-1) 

        train_f1 = f1_score(y_true=train_y, y_pred=train_prediction, 

                           average='macro') 

        val_f1 = f1_score(y_true=val_y, y_pred=val_prediction, 

                         average='macro') 

         

        #printing evaluation 

        print(f'Epoch {i}') 

        print(f'Overall train f1 : {train_f1}, overall val f1: {val_f1}') 

        print(f'Train loss : {train_loss}, val loss: {val_loss}') 
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        d_train = evaluate_on_datasets(y_true=train_y, y_pred=train_predic-

tion, split='train') 

        d_val = evaluate_on_datasets(y_true=val_y, y_pred=val_prediction, 

split='val') 

             

        if i!=epochs-1: 

            print('-'*30) 

             

        #save history 

        update_history(dict_history, d_train) 

        update_history(dict_history, d_val) 

        update_history(dict_history, {'train_f1': train_f1}) 

        update_history(dict_history, {'val_f1': val_f1}) 

        update_history(dict_history, {'train_loss': train_loss}) 

        update_history(dict_history, {'val_loss': val_loss}) 

        #early stopping 

         

        early_stopping(val_f1, model) 

        if early_stopping.early_stop: 

            print('Stopping early') 

            model = early_stopping.best_model 

            break 

         

    return dict_history, model 

 

# %% 

dict_history, model = \ 

training_loop(model, train_x, train_y,  

              val_x, val_y, epochs=20, batch_size=2048, shuffle=True) 

 

# %% 

dict_history 

 

# %% 

""" 

# Show charts 

""" 

 

# %% 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# %% 

def plot_history(dict_history, columns): 

    plt.figure(figsize=(12,8)) 

    for i in columns: 

        to_plot = dict_history[i] 

        plt.plot(range(len(to_plot)), to_plot, 'o-') 

    plt.xticks(range(len(to_plot)), range(len(to_plot))) 

    plt.xlabel('Epochs') 

    plt.legend(columns) 

 

# %% 

plot_history(dict_history, ['val_loss', 'train_loss']) 

 

# %% 

plot_history(dict_history, ['val_f1', 'train_f1']) 

 

# %% 

""" 

# Evaluate model 

""" 

 

# %% 
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test_predictions = np.argmax(model.predict(test_x, batch_size=2048), axis=-1) 

 

# %% 

test_f1 = f1_score(y_true=test_y, y_pred=test_predictions, 

                         average='macro') 

print(f'Overall test f1-score : {test_f1}') 

 

# %% 

test_results = evaluate_on_datasets(y_true=test_y, y_pred=test_predic-

tions,split='test') 

                      

 

# %% 

""" 

# Confusion matrix 

""" 

 

# %% 

inverse_mapping = dict([(v,k) for k,v in mapping.items()]) 

 

# %% 

from sklearn.metrics import confusion_matrix 

 

# %% 

np.unique(test_y) 

 

# %% 

matrix = confusion_matrix(test_y, test_predictions) 

matrix_scaled = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis] 

plt.figure(figsize=(14,10)) 

sns.heatmap(matrix_scaled, annot=True, cmap=plt.cm.Blues, xticklabels=[in-

verse_mapping[i] for i in np.unique(test_y)],\ 

            yticklabels=[inverse_mapping[i] for i in np.unique(test_y)]) 

plt.title('Confusion matrix') 

plt.xlabel('Predicted label') 

plt.ylabel('True label') 

 

plt.show() 

 

# %% 

test_df = df[subsets['split']=='test'].copy() 

 

# %% 

test_df['predicted_rating'] = [inverse_mapping[i] for i in test_predictions] 

 

# %% 

""" 

# Save history results 

""" 

 

# %% 

history = pd.DataFrame(dict_history) 

for k,v in test_results.items(): 

    history[k] = v 

 

# %% 

history['model'] = model_name 

 

# %% 

history.to_csv("/home/user/jupyter_notebooks/Ukranian-SA/notebooks/train-

ing/training_results_filtered.csv", mode='a', header=None, index=None) 

 

# %% 

""" 
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# Save model 

""" 

 

# %% 

model.save(f'/home/user/files_for_research_Vova/{model_name}.h5') 

 

# %% 
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Appendix F (required) 

Plagiarism check protocol 

 

ПРОТОКОЛ 

ПЕРЕВІРКИ КВАЛІФІКАЦІЙНОЇ РОБОТИ 

НА НАЯВНІСТЬ ТЕКСТОВИХ ЗАПОЗИЧЕНЬ 
 

Назва роботи: Розробка системи визначення ключових фраз у відгуках 

українською мовою за допомогою штучного інтелекту     
 

Тип роботи: магістерська кваліфікаційна робота     
(БДР, МКР) 

 

Підрозділ: кафедра Автоматизації та інтелектуальних інформаційних 

технологій, факультет інтелектуальних інформаційних технологій та 

автоматизації  
(кафедра, факультет) 

 

Показники звіту подібності Unicheck 
 

Оригінальність 98.1% Схожість 1.9% 
 

Аналіз звіту подібності (відмітити потрібне): 
 1. Запозичення, виявлені у роботі, оформлені коректно і не містять ознак плагіату. 

 2. Виявлені у роботі запозичення не мають ознак плагіату, але їх надмірна кількість 

викликає сумніви щодо цінності роботи і відсутності самостійності її виконання автором. 

Роботу направити на розгляд експертної комісії кафедри. 

 3. Виявлені у роботі запозичення є недобросовісними і мають ознаки плагіату та/або в 

ній містяться навмисні спотворення тексту, що вказують на спроби приховування 

недобросовісних запозичень. 

 

Особа, відповідальна за перевірку     Роман МАСЛІЙ   
(підпис)     (прізвище, ініціали) 

 

Ознайомлені з повним звітом подібності, який був згенерований системою 

Unicheck щодо роботи. 

 

Автор роботи        Володимир КОВЕНКО  
(підпис)    (прізвище, ініціали) 

 

Керівник роботи         Ілона БОГАЧ  
(підпис)    (прізвище, ініціали) 

 


